

InnoDB Database Forensics

Peter Frühwirt, Markus Huber
Vienna University of Technology

Vienna, Austria
markus.huber@tuwien.ac.at

Martin Mulazzani, Edgar R. Weippl
SBA Research
Vienna, Austria

{mmulazzani|eweippl@sba-research.org}

Abstract— Whenever data is being processed, there are many
places where parts of the data are temporarily stored; thus
forensic analysis can reveal past activities, create a (partial)
timeline and recover deleted data. While this fact is well known
for computer forensics, multiple forensic tools exist to analyze
data and the systematic analysis of database systems has only
recently begun. This paper will describe the file format of the
MySQL Database 5.1.32 with InnoDB Storage Engine. It will
further explain with a practical example of how to reconstruct
the data found in the file system of any SQL table. We will
show how to reconstruct the table as it is, read data sets from
the file and how to interpret the gained information.

Keywords- MySQL, InnoDB, Database and Forensic

I. INTRODUCTION
Today’s society would be unimaginable without database

systems. The information forms an important commodity.
Most of the information is stored and processed in databases.
Most of this information can be very precious for its owner
as it concerns data regarding patients or customer
information, which is covered by the relevant data
protection. The results and information gained from database
forensics can be used for several reasons. First, for many
companies it is relevant to know if the integrity of their data
has been compromised or users’ privacy has been violated
[14]. This means that they need or want to prove, whether or
not, their databases has been tampered with. Second, results
of database forensics can be used to detect and analyze
attacks, understand which vulnerabilities were exploited and
to develop preventive countermeasures. Third, modern file
systems develop in the direction of database systems and
thus database forensic will also become important for file
forensics.

Common file systems, such as FAT, NTFS, HFS+ or
ext2/ext3 are well understood in the forensic community [8]
and are supported by many forensic tools, for example
EnCase [23] or The Sleuth Kit [24]. Exotic or new file
systems are much harder to analyze as these tools do not
support them. This makes it increasingly difficult as new file
systems are in constant development. Recent research has
been focusing on more advanced file systems that partially
rely on data structures found in database systems. These
include IBM’s JFS [4] or Journaling File Systems [5], ext3
and reiserFS [15]. New and upcoming file systems include
Btrfs and ext4, which are already included in many Linux
distributions. Btrfs is based on the well known data structure
called B-tree [3] that is also used in database indices [2].

Clearly, database systems are bound to leave more
extensive traces than “normal” files as they not only store
files but, in addition, need indexes, rollback segments and
log files. Therefore, the analysis of the structure in the
database management system is a precondition for forensic
analysis [9, 10, 11].

To analyze the data, it is important to know and
understand in detail, how the database is built. Only with this
basic knowledge can one prove the consistency of the data.
The goal of this paper is to explain how to analyze the
database system MySQL with the storage engine InnoDB.
This paper shows the structure and architecture of this
database system and how one can reconstruct data from the
files in the file system. Based on these findings we provide
an application that reads and interprets this basic data to
facilitate the detection of any unauthorized manipulation.

In the first section of this paper we will explain the basis
of a simple SQL-table and how all relevant information like
keys, types and others are saved and how they can be read
from the files. In the second part of this paper we will show
how data in tables can be saved with the help of the InnoDB
storage in the files and how to interpret this data. We refer to
the MySQL source code in all our explanations1. While the
MySQL documentation (such as [18-22]) provides a good
starting point; none of the presented material has to the best
of our knowledge been documented anywhere else.

II. SQL INTERNALS
Storage engines of MySQL store all information of each

single table in a .frm file in the directory of the database. The
filename is the name of the table [1]. Each .frm file is
created by the function create_frm() in the file /sql/table.cc
[Appendix 1]. The file size of a single .frm file is limited to
4 GB. If this limit is reached MySQL will automatically
truncate the file to prevent errors [13,16].

A. General Table Information
All general information of the file, such as the used

version number, is saved at the first bytes of the .frm file.
Table 1 shows the structure of the first bytes of a .frm file
starting at position 0x0. Table 2 explains the meaning of the
bytes. All references to the line numbers of the source code
refer to the file /sql/table.cc [Appendix 1].

1 All information of the data structures and source code refers to the
MySQL database management system in the version 5.1.32 for apple-
darwin9.5.0 on i386 (Mac OS X 10.5.7 Leopard).

TABLE I. HEXADECIMAL STRUCTURE OF .FRM FILE (0X00000000 -
0X0000004F)

0x00000000 FE 01 0A 0C 03 00 00 10 01 00 00 30 00 00 69 010..i.
0x00000010 10 01 00 00 00 00 00 00 00 00 00 02 21 00 09 00!...
0x00000020 00 05 00 00 00 00 30 00 02 00 00 00 00 00 00 690.......i
0x00000030 01 00 00 D4 C3 00 00 10 00 00 00 00 00 00 00 00
0x00000040 2F 2F 00 00 20 00 00 00 00 00 00 00 00 00 00 00 //..

TABLE II. EXPLANATION AND MEANING OF THE HEXADECIMAL
VALUES OF THE .FRM FILE (0X00000000 - 0X00000040)

Offset Length Value Meaning Source
Code

0x00 1 FE fixed value 2454

0x01 1 01 fixed value 2455

0x02 1 0A FRM_VERSION
(/include/mysql_version.h
[Appendix 2]) + 3 +
test(create_info->varchar)

2456

0x03 1 0C Database type (sql/handler.h Z. 258-
279) [Appendix 3])
z.B.: DB_TYPE_MYISAM: 9,
DB_TYPE_INNODB: 12

2458-2459

0x04 1 03 unknown

0x05 2 00 00 unknown or undefined

0x07 2 10 01 IO_SIZE (4096)
Definition in include/my_global.h
[Appendix 13]

2461

0x09 2 01 00 unknown

0x0A 4 00 30
00 00

keylength
(IO_SIZE+key_length+reclength+
create_info->extra_size). Table 3
shows exact meaning of the key
length (key_length)

2474-2477

0x0E 2 69 01 length of the temporary key, based
on key_length

2478-2479

0x10 2 10 01 length of the record 2480

0x12 4 00 00
00 00

create_info->max_rows (definition
of the create_info structure
HA_CREATE_INFO in
sql/handler.h [Appendix 3] in line
896-924)

2481

0x16 4 00 00
00 00

create_info->min_rows 2482

0x1A 1 00 unused or padding / alignment -

0x1B 1 02 fixed value (use long pack-fields) 1)

0x1C 2 21 00 key_info_length 1)

0x1E 2 09 00 create_info->table_options 2486-2487

0x20 1 00 fixed value 2488

0x21 1 05 fixed value (frm version number: 5) 2489

0x22 4 00 00
00 00

create_info->avg_row_length 2490

0x26 1 30 create_info->default_table_charset 2491-2492

0x27 1 00 create_info->transactional |
create_info->page_checksum << 2

2493

0x28 1 02 create_info->row_type 2495

0x29 6 00 00
00 00
00 00

RAID Support 2496-2502

0x2F 3 69 01
00 00

key_length 2503

0x33 4 D4
C3 00
00

MYSQL_VERSION_ID (only
saved to prevent a warning, because
of unaligned key_length of 3 bytes)

2504-2505

0x37 4 10 00
00 00

create_info->extra_size (length of
extra data sequence)

2506

0x3B 2 00 00 extra_rec_buf_length (reservation) -

0x3D 1 00 default_part_db_type (reservation) -

0x3E 2 00 00 create_info->key_block_size 2511

TABLE III. STRUCTURE OF A KEY DEFINED IN /SQL/UNIREG.CC
[APPENDIX 4]

Length Meaning (all keys)

8 key header

9 key parts(MAX_REF_PARTS)

NAME_LEN name of the key

1 separator NAMES_SEP_CHAR (before name of key)

Length Meaning (single key)

6 key header

1 separator NAMES_SEP_CHAR (after name of key)

9 padding and alignment

Further information will not be saved up to the fixed

address 0x1000. This space is filled with null-values. The
keys of a table will be saved at position 0x1000. At this point
we want to explain how one can reconstruct the following
SQL table:

CREATE TABLE `Project` (
 `idProject` int(11) NOT NULL

 AUTO_INCREMENT,
 `name` varchar(255) NOT NULL,
 `deleted` tinyint(1) DEFAULT NULL,
 `startTime` date DEFAULT NULL,
 `endTime` date DEFAULT NULL,
 `effort` int(10) DEFAULT NULL,
 PRIMARY KEY (`idProject`)

) ENGINE=InnoDB DEFAULT CHARSET=latin
AUTO_INCREMENT=352;

Appendix 5 contains the Project.frm file of this table.

B. Primary Key
Table 4 shows the stored primary key in the file

Project.frm [Appendix 5]. This can be found starting at
address 0x1000.

TABLE IV. HEXADECIMAL STRUCTURE OF .FRM FILE (0X00000000 -
0X0000004F)

0x00001000 01 01 00 00 0A 00 00 00 04 00 01 00 00 00 01 80
0x00001010 02 00 00 1B 00 04 00 FF 50 52 49 4D 41 52 59 FFPRIM

ARY.

All following references to the source code lines are from

the file /sql/unireg.cc [Appendix 4]. The byte value in
address 0x000001001 indicates how many keys exist in this
table. The structure st_key (KEY) of “key“ is defined in the
file /sql/structs.h [Appendix 8] at line 72-101, the structure
st_key_part_info (KEY_PART_INFO) of “key_part“ on line
52-69. With this data you can reconstruct the primary key of
this table (field: idProject) as follows:

TABLE V. KEY DEFINITIONS (0X00001000 - 0X0000101F)

Offset Len Value Meaning Source Code

0x04 2 0A 00 key->flags ^ HA_NOSAME
dupp key and pack fields

521

0x06 2 00 00 key->key_length
length of the key

522

0x08 1 00 key->key_parts
sum or number of key parts

523

0x09 1 04 key->algorithm
key algorithm from
include/my_base.h (line 93-99)
[Appendix 9]. The value 04
means in this case
HA_KEY_ALG_FULLTEXT

524

0x0A 2 00 01 key->block_size 525

0x0B 3 00 00
00

K

E

Y

H

E

A

D

E

R

unused (padding, alignment) 526

0x0E 2 01 80 key_part-
>fieldnr+1+FIELD_NAME_USE
D

540

0x10 2 20 00 offset (key_part-
>offset+data_offset+1)

541-542

0x12 1 00 fixed value (sorting order) 543

0x13 2 1B 00

K

E

Y

P

A

R
 key_part->key_type 544

Offset Len Value Meaning Source Code

0x15 1 04 key_part->length
length of the key parts in bytes

545

0x16 1 00

T

S

unused (padding, alignment) 546

0x17 1 FF separator NAMES_SEP_CHAR
(before name of key)

551/555

0x18 7 50 52
49 4D
41 52
59

name of key (PRIMARY) 554

0x1F 1 FF separator NAMES_SEP_CHAR (after
name of key)

555

A table with a primary key over more fields than one

would have a similar structure. The following MySQL table
is given:

CREATE TABLE `pk2` (
 `field1` int(10) NOT NULL,
 `field2` int(10) NOT NULL,
 `field3` int(10) NOT NULL,
 PRIMARY KEY (`field1`,`field3`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

TABLE VI. KEY DEFINITION OF A PRIMARY KEY OVER MORE THAN
ONE FIELD (0X00001000 - 0X0000102F)

0x00001000 01 02 00 00 0A 00 00 00 08 00 02 00 00 00 01 80
0x00001010 02 00 00 1B 40 04 00 03 80 0A 00 00 1B 40 04 00 ..@....@..
0x00001020 FF 50 52 49 4D 41 52 59 FF 00 00 00 00 00 00 00 .PRIMA

RY.......

Table 6 shows the changes in the hexadecimal structure.

The definition in the primary key covers more than one field.
The value 01 was increased by one. This value stands for the
numbers of keys. The two fields of the two parts of the
primary key are described by the values 01 02 00 00
1B 40 04 00 and 03 80 0A 00 00 1B 40 04 00.
The first byte stands for the number of the field. In this
example it would be the fields “field1“ (first field of this
table) and “field3“ (third field of this table).

C. MySQL Storage Engine
After the definition of the keys, InnoDB saves null-

values as placeholders. After about 0x100 - 0x300 addresses
one will find between further null-values a six byte long
string. This string stands for the used storage engine. In the
case of the InnoDB Storage Engine the string would have the
value 49 6E 6E 6F 44 42 (=InnoDB).

D. Field Definitions
After the definition of the used MySQL Storage engine

up to the address 0x00002100 follow only null-values as
placeholders. Starting at this address one will find the
definition of the single columns in the table. All references to
the line numbers of the source code belong to the file
/sql/unireg.cc [Appendix 4].

TABLE VII. HEXADECIMAL STRUCTURE OF THE FIELD HEADER
(0X00002100 - 0X0000213F)

0x00002100 01 00 06 00 72 00 29 01 00 00 10 01 32 00 00 00r.)...2...
0x00002110 00 00 00 00 00 00 50 00 16 00 04 00 00 00 00 00P.......
0x00002120 72 00 07 06 02 14 29 20 20 20 20 20 20 20 20 20 r.....)
0x00002130 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

TABLE VIII. STRUCTURE OF A FIELD HEADER

Offset Length Value Meaning Source
Code

0x00 1 01 fixed value (screens) 726

0x01 1 00 unused 722

0x02 2 06 00 create_fields.elements 727

0x04 2 72 00 info_length 728

0x06 2 29 01 tolength 729

0x08 2 00 00 no_empty 730

0x0A 2 10 00 reclength 731

0x0C 2 32 00 n_length 732

0x0E 2 00 00 int_count 733

0x10 2 00 00 int_parts 734

0x12 2 00 00 int_length 735

0x14 2 50 00 time_stamp_post 736

0x16 2 16 00 columns needed (default: 80) 737

0x18 2 04 00 rows needed (default: 22) 738

0x1A 2 00 00 null_fields 739

0x1C 2 00 00 com_length 740

0x1E 4 00 00
72 00

placeholder for further information 741

TABLE IX. HEXADECIMAL STRUCTURE OF THE FIELDS (0X00002190 -
0X000021EF)

0x00002190 74 00 04 0A 0B 0B 00 02 00 00 1B 00 0F 00 00 03 t..............
0x000021A0 30 00 00 05 05 4A FF 00 06 00 00 00 40 00 00 00 0...J...@..
0x000021B0 0F 08 00 00 06 08 01 01 00 06 01 00 0B 80 00 00
0x000021C0 00 01 30 00 00 07 0A 0A 0A 00 07 01 00 70 80 00 ..0.......P..
0x000021D0 00 00 0E 30 00 00 08 08 0A 0A 00 0A 01 00 70 80 ...0.......P.
0x000021E0 00 00 00 0E 30 00 00 09 07 0A 0a 00 0D 01 00 1A0.........

TABLE X. STRUCTURE OF A FIELD

Offset Length Value Meaning Source
Code

0x00 1 04 field->row 793

0x01 1 0A field->col 794

0x02 1 0B field->sc_length 795

0x03 2 0B 00 field->length 796

0x05 3 20 00
00

recpos (field->offset+1 +
data_offset)

797-799

0x08 2 1B 00 field->pack_flag 800

0x0A 2 0F 00 field->unireg_check 801

0x0C 1 00 field-->interval_id 802

0x0D 1 03 field->sql_type (siehe
/include/mysql_com.h)

803

0x0E 1 30 if the field has got the type
MYSQL_TYPE_GEOMETRY, the
value will be field->geom_type, else
charset field->charset if defined else

0 (numerical)

804-814

0x0F 2 00 00 field->comment.length 815

One can find more information about the MySQL Types

at offset 0x0D in the file /include/mysql_com.h [Appendix
6]. The value of this field will define the type of the column.
The information about the type is, in some cases, not enough.
For example, the types varchar and varbinary have a type
value of 0x0F. In that case, one has to know more about the
table. This means that one has to know the flags at offset
0x08. The flag “isBinary“ defines in common with the type
value of the field the correct type of the field.

TABLE XI. HEXADECIMAL STRUCTURE OF THE FIELD NAMES
(0X000021F0 - 0X0000222F)

0x000021F0 80 00 00 00 03 30 00 00 FF 69 64 50 72 6F 6A 650...idP
roje

0x00002200 63 74 FF 6E 61 6D 65 FF 64 65 6C 65 74 65 64 FF ct.name.d
eleted.

0x00002210 73 74 61 72 74 54 69 6D 65 FF 65 6E 64 54 69 6D startTime
.endTim

0x00002220 65 FF 65 66 66 6F 72 74 FF 00 e.effort..

III. DATA STORAGE
In contrast to the storage of the table information in the

.frm files, the structure of data of every MySQL Storage
Engine is different. In this section we will only refer to the
InnoDB Storage Engine because space and time is limited.

Per default the InnoDB Storage Engine saves all data of
every table in one single file. This can be an advantage for
forensic analysis because deleted rows may exist for a long
time. Analyzing the structure and architecture of the storage
engine in one huge file is not necessarily conductive. One
can force InnoDB to save every piece data of a table in one
single file by editing the configuration file my.cnf and adding
an entry “innodb-file-per-table=ON“. InnoDB will not split
up the existing data file, but it will now create a single data
file for every table.

A. Overview
The InnoDB storage format has seven parts:

1. Fil Header
2. Page Header
3. Infimum- and Supremum Records
4. User Records
5. Free Space
6. Page Directory
7. Fil Trailer

B. Fil Header
The fil header creates together with the fil trailer a

container around the pages in the data file. The fil header
defines all important data in the file like offsets and
checksums.

TABLE XII. HEXADECIMAL STRUCTURE OF A FIL HEADER

0x0000000 35 69 8D 4D 00 00 00 00 ff ff ff ff ff ff ff ff 5i.M........
0x00000010 00 00 00 00 01 EA 03 31 00 08 00 00 00 00 00 001.......
0x00000020 00 00 00 00 00 BC 00 00 00 BC 00 00 00 00 00 00

All references to the line numbers of the source code

point to file /storage/innodb/include/fil0fil.h [Appendix 7].

TABLE XIII. MEANING OF THE FIL HEADERS

Offset Length Value Meaning Source
Code

0x00 1 04 field->row 793

0x01 1 0A field->col 794

0x02 1 0B field->sc_length 795

0x03 2 0B 00 field->length 796

0x05 3 20 00
00

recpos (field->offset+1 +
data_offset)

797-799

0x08 2 1B 00 field->pack_flag 800

0x0A 2 0F 00 field->unireg_check 801

0x0C 1 00 field-->interval_id 802

0x0D 1 03 field->sql_type (siehe
/include/mysql_com.h)

803

0x0E 1 30 if the field has got the type
MYSQL_TYPE_GEOMETRY, the
value will be field->geom_type, else
charset field->charset if defined else

0 (numerical)

804-814

0x0F 2 00 00 field->comment.length 815

The pointers FIL_PAGE_PREV and FIL_PAGE_NEXT

are very important for efficient serial queries. These pointers
are the direct link between two adjacent pages (linked list).
With the help of these two pointers a database management
system can read data very quickly. If a serial query is
executed, the database management system will start reading

the smallest value of this query and read every following
user record. If it reaches the end of a page it can quickly
jump to the next value at the next page with the help of the
pointer FIL_PAGE_NEXT.

C. Page Header
The page header creates together with the page directory

the infimum- and supremum records, which is the outer
casing of the user records. A page is in the hierarchy along
with the last and smallest unit before a single data row. The
page header contains all important information about a page.
It defines important positions at the heap and b-tree.
Therefore the page header can be used to pinpoint how many
records on this page are deleted and how many bytes are free
for further rows.

TABLE XIV. HEXADECIMAL STRUCTURE OF A PAGE HEADER

0x0000C020 00 00 00 00 00 BC 00 02 01 E3 80 09 00 00 00 00
0x0000C030 01 C3 00 02 00 06 00 07 00 00 00 00 00 00 00 00
0x0000C040 00 00 00 00 00 00 00 00 01 02 00 00 00 BC 00 00
0x0000C050 00 02 00 F2 00 00 00 BC 00 00 00 02 00 32 01 002..

TABLE XV. STRUCTURE OF A PAGE HEADER

Offset Length Value Meaning Source
Code

0x08 2 01 E3 PAGE_N_DIR_SLOTS
count of slots in one page

directory

38

0x0A 2 80 09 PAGE_HEAP_TOP
pointer to the root of the heaps of

this records

39

0x0C 2 00 00 PAGE_N_HEAP
count of entries in the heap. Bit

15 is a flag for “new-style
compact page format“

40-41

0x0E 2 00 00 PAGE_FREE
pointer to the start of the “page

free record list“

42

0x10 2 01 C3 PAGE_GARBAGE
amount of bytes in deleted

records

43

0x12 2 00 02 PAGE_LAST_INSERT
pointer to the last inserted entry
or NULL, if the last action was

e.g. a DELETE operation.

44-46

0x14 2 00 06 PAGE_DIRECTION
last insert direction
(PAGE_LEFT, ...)

47

0x16 2 00 07 PAGE_N_DIRECTION
amount of last inserts in the same

direction

48-49

0x18 8 00 00 00
00 00 00

00 00

PAGE_MAX_TRX_ID
last TransaktionID, which made a

modification on a user record.

51-57

0x20 2 00 00 PAGE_LEVEL
level of the node in the index tree

(leafs: 0)

61-62

0x22 8 00 00 00
00 00 00

01 02

PAGE_INDEX_ID
IndexID to which this page

belongs

63

0x2A 10 00 00 00
BC 00 00
00 02 00

F2

PAGE_BTR_SEG_LEAF
File segment header of the leaf at

the b-tree. Only defined at the
root of the tree or at ibuff-trees.

64-66

0x34 10 00 00 00
BC 00 00
00 02 00

32

PAGE_BTR_SEG_TOP
File segment header of non-leafs
at a b-tree. Only defined at the

root of the b-tree or at ibuf-trees.

74-78

D. Infimum- and Supremum Records
InnoDB creates the infimum and supremum records

automatically and will never delete them. The infimum
record stands for the lowest possible value of an existing
entry of the following data segment. This barrier is used for
the navigation and it prevents “get-prev“ to disregard the
beginning of the data segment. Analogical order, the
supremum record stands for the maximum. InnoDB
sometimes uses the infimum record to temporarily lock
access to records of this segment. For this action, InnoDB
will replace the infimum record with a “dummy entry“
instead of the correct infimum record.

The usage of the infimum- and supremum entries works
in the b-tree of the InnoDB storage engine because the keys
are reached in a sorted order.

TABLE XVI. HEXADECIMAL STRUCTURE OF INFIMUM AND SUPREMUM
ENTRIES

0x0000C050 00 02 00 F2 00 00 00 BC 00 00 00 02 00 32 01 002..
0x0000C060 02 00 1C 69 6E 66 69 6D 75 6D 00 08 00 0B 00 00 ..infimum..
0x0000C070 73 75 70 72 65 6D 75 6D 11 00 00 00 10 00 34 80 supremum.

E. User Records
The user record contains one single row for each record.

The following Table shows the structure of one user record.
The offsets of the data in a row have information about the
NULL values and the extra bytes (see Table 20) are defined
at the beginning of the user record.

TABLE XVII. PART OF THE HEXADECIMAL STRUCTURE OF THE USER
RECORD

0x0000C070 73 75 70 72 65 6D 75 6D 11 00 00 00 10 00 34 80 supremum.
.....4.

0x0000C080 00 01 59 00 00 00 01 21 3C 80 00 00 00 2D 01 10 ..Y..!<....-..
0x0000C090 41 6D 70 65 6C 20 41 70 70 6C 69 6B 61 74 69 6F Ampel

Applikatio
0x0000C0A0 6E 80 8f B2 C1 8F B2 DE 80 00 00 14 10 00 00 00 n...............
0x0000C0B0 18 00 33 80 00 01 5A 00 00 00 01 21 3C 80 00 00 ..3...Z..!<...
0x0000C0C0 00 2D 01 1D 43 61 6D 70 69 6E 6f 20 48 6F 6D 65 .-

..Campino
Home

To analyze the user records one has to know the exact

structure of the table. The length of the data is defined in
most cases at the offsets in the beginning of the records.
Nevertheless, for some types the definition of length is

missing because some types like “date“ have got a fixed
length.

(root@localhost) forensic> DESCRIBE Project;
+-----------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+--------------+------+-----+---------+----------------+
idProject	int(11)	NO	PRI	NULL	auto_increment
name	varchar(255)	NO		NULL	
deleted	tinyint(1)	YES		NULL	
startTime	date	YES		NULL	
endTime	date	YES		NULL	
effort	int(10) unsi	YES		NULL	
+-----------+--------------+------+-----+---------+----------------+
6 rows in set (0.00 sec)

In this example the field “name“ has got a variable

length. The length of the outer fields are fixed because of
their types as defined in the Project.frm. The fields
“idProject“ and “effort“ with the type “int“ are four bytes,
the fields “startTime“ and “endType“ are three bytes and the
field “deleted“ is one byte.

With this information you can read following data of this
user record:

TABLE XVIII. STRUCTURE OF A SINGLE USER RECORD

Offset Length Value Meaning

0x08 1 11 length of the first variable field (name),
this field could have the length of two

bytes.

0x09 1 00 information about the NULL-values. The
size of this field is variable and is based
on the amount of fields, which can be

NULL.

0x10 6 00 00 10 00 34
80

extra bytes (more information about the
extra bytes can be found at table 20)

0x20 3 00 01 59 primary key (If nonexistent this field will
have the value of an ascending ID,

because this is needed for the position at
the b-tree)

0x23 6 00 00 00 01 21
3C

transactions ID

0x29 7 80 00 00 00 2D
01 10

rollback data pointer

0x30 11 41 6D 70 65 6C
20 41 70 70 6C
69 6B 61 74 69

6F 6E

first data field (name). The length of this
field was defined at the Offset 0x08.

content: Ampel Applikation

0x41 1 80 second data field (deleted). The length of
this field is defined by its type “tinyint“

(1 byte). The value of this field is
calculated by the subtraction with 0x80,
because this field is unsigned. Value: 0

0x42 3 8F B2 C1 third data field (start time). The length of
this field is defined by its type “date“ (3

bytes). You will find the exact
interpretation of this value in the section

“Interpretation of SQL data types“.
Value: 2009-07-02

0x45 3 8F B2 DE fourth data field (endTime). see startTime
field for explanation. Value: 2009-07-31

0x48 4 80 00 00 14 fifth data field (effort). The length of this
field is defined by its type “int“ (4

Bytes). Value: 20

The extra bytes 00 00 10 00 34 80 can be interpreted in

the binary system as following:

TABLE XIX. BINARY STRUCTURE OF THE EXTRA BYTES

0x0000C050 00 02 00 F2 00 00 00 BC 00 00 00 02 00 32 01 002..
0x0000C060 02 00 1C 69 6E 66 69 6D 75 6D 00 08 00 0B 00 00 ..infimum..
0x0000C070 73 75 70 72 65 6D 75 6D 11 00 00 00 10 00 34 80 supremum.

TABLE XX. STRUCTURE OF THE EXTRA BYTES

Offset Length Value Meaning

0 1 0 unused

1 1 0 unused

2 1 0 DELETED_FLAG
The value 1 shows, that this row was

deleted.

3 1 0 MIN_RECORD_FLAG
The value 1 shows, that this entry is the

predefined minimum.

4 4 0 0 0 0 N_OWNED Amount of entries, which
are owned by this record.

8 13 0 0 0 0 0 0 0 0 0
1 0 0 0

HEAP_NO
Sorting number of this entry in the heap

of the index page

21 10 0 0 0 0 0 0 0 0 0
1

Amount of fields with variable length at
this entry

31 1 0 1BYTE_OFFS_FLAG
This bit is 1, if all fields have an offset

with the length of one byte

32 16 0 1 0 1 0 0 1 1 1
0 0 0 0 0 0 0

pointer to the next entry at this page

One can gain a lot of information from the user records.

If a user deletes a row, the database management system will
not physically delete this record because of performance
reasons. Therefore, the database management system will
mark this record as deleted with the DELETED_FLAG
(Table 20, offset 0x02). This row can be easily recovered.
Tests show that the database management system will very
quickly replace these deleted rows. After that, it is very
difficult to reconstruct this data.

If the user record contains NULL-Values, InnoDB will
save the information about the NULL-Values at the bytes
after the information regarding the length (Table 18, offset
0x09). If an update query is executed and this query replaces
the value of a field with NULL, InnoDB does not replace the
value. Instead it will only change a bit in the NULL

Information. In this case, the old value can be read from the
record even at a later date.

F. Free Space
This part of the InnoDB storage file contains only

placeholder (NULL-values) for further user records. If this
area does not contain enough space for further rows, InnoDB
will automatically create a new page.

G. Page Directory
The page directory contains an amount of pointers

between the records. The order of the pointers is equal with
the logical order of the records. That means that this order is
not equal with the order at the heap. Because of this fact, one
can easily implement a binary search through the records.

H. Fil Trailer
The fil trailer can be found at the last 8 bytes of the page.

In our example, one can find the fil trailer in the address
0x0000BFF8. The definition of the value
FIL_PAGE_END_LSN_OLD_CHKSUM in the source code
can be found in the file storage/innobase/include/fil0fil.h
[Appendix 7].

TABLE XXI. STRUCTURE OF THE FIL TRAILER

Offset Length Value Meaning Source
Code

0x00 4 22 E1
22 20

checksum of this page (first four
bytes of

FIL_PAGE_END_LSN_OLD_CHK
SUM)

101-104

0x04 4 01 EA
03 31

equal with FIL_PAGE_LSN from
table 13 (last four bytes of

FIL_PAGE_END_LSN_OLD_CHK
SUM)

101-104

IV. INTERPRETATION OF SQL DATA TYPES
Every single data type has its own interpretation of the

hexadecimal string in the user records. Because of its
complexity, we would like to explain some data types
quickly and how one can interpret the value of some
important types of formats.

A. Numbers (Tinyint, Smallint, Int and Bigint)
If the field has the attribute “signed“, one has to subtract

0x80 (tinyint), 0x80 00 (smallint), 0x80 00 00 00 (int) and
0x80 00 00 00 00 00 (bigint).

B. Float and Decimal
Float and decimal are two data types saved with the same

method. The differences between the two data types are
length (four and eight bytes) and its precision. MySQL will
automatically save fields at the height of accuracy as a
decimal instead of a float.

If one wants to calculate the value of the field, one has to
calculate the binary value of the field. The last seven bits
stand for the exponent. One can get the correct exponent if

one subtracts 10000002 from it. The 8th bit from the end of
the bit string is the flag for the used sign. If this flag is 1, the
real number will be negative. The other bits stand for the
mantissa. In contrast to the IEEE 754 standard MySQL uses
a seven bit long exponent instead of a eight bit long
exponent. Therefore, one cannot use libraries to calculate the
results. In case of the type float the mantissa is 3 bytes long,
in case of decimal 7 bytes. The exponent with the sign flag
has to be in both cases the length of one byte.

C. Date and time
1) Date

Before one can interpret the value of a date field one has
to convert the value to the decimal system and subtract
0x800000 if it is greater than 0x800000. If the value is before
the following date 01.01.0000 (before the birth of Christ),
you can now convert the resulting number “value“ to a date
object:

year = floor(value / 512)
month = floor((value mod 512) / 32)+1
day = (value mod 32) +1;

2) Datetime
The first steps of interpreting a datetime field are equal

with the interpretation of a date field. One has to convert the
number to the decimal system and subtract 0x80 00 00 00 00
00 00 if possible. You can now interpret the result “value“.

year = floor((value / 1.000.000) / 10.000)
month = floor(((value / 1.000.000) mod 10.000) / 100)
day = (value / 1.000.000) mod 100
hour = floor((value mod 1.000.000) / 10.000)
minute = floor((value mod 10.000) / 100)
second = value mod 100

3) Timestamp
It is very easy to interpret the timestamp: one has only to

convert the hexadecimal string to the decimal system. The
format of the timestamp is equal with the POSIX-Standard of
UNIX time definition of the year 1969.

4) Time
Before one can interpret the value of the time field one

has to convert the hexadecimal string to the decimal system.
After that, one has to take the modulus of 1.000.000 and
subtract 388.608 from it. Now you can interpret the value of
the number:

hour = floor(value / 10.000)
minute = floor((value % 10.000) / 100)
second = value % 100

5) Year
MySQL starts to count the years starting at the year 1900.

This means that you have to add 1900 to the decimal value
of the field. It is not possible to save years before the year
1900.

V. CONCLUSION
This paper shows how the MySQL tables in the .frm files

are built and how important information is saved. With that
information it is possible to read every important information
in a table from this file. This paper describes the entire
structure of the file format of the InnoDB Storage Engine.
With this information one can read rows from the storage

files and can recover some deleted or overwritten rows and
detect inconsistencies that may occur from an attacker. For
instance, manually altering the data files and circumventing
access restrictions imposed by access control mechanisms of
the database [6].

To interpret the data one has to know a lot about the
MySQL Internals. Therefore, we show how one can convert
most of the important SQL types to a readable string. For this
interpretation, one needs a lot of information from the
relevant tables. The detailed analysis of the .frm files is
therefore, very important.

With the data found from the files one can partly recover
deleted and updated user records from the file system. The
aim of this paper is to identify and name the bytes and
interpret them. With that knowledge, it is possible to detect
inconsistencies in the database. To prove it in detail you need
to know more about the history of the tables. A connection
between the binary log files and the user records make it is
possible to prove the consistency of the table in detail
because of the transaction-ID in the User Records.

Appendix 12 contains an analysis program we created,
which can read the data from a MySQL Database with
InnoDB Storage Engine. The program reads the bytes and
identifies them. The data will then be converted to known
structures and objects. Initially, the program will read and
reconstruct the table structure from the .frm file. Information
about the columns will be saved in an instance of the class
/structure/Field.java. This information is used to analyze the
structure of the data in the InnoDB storage data file. The
program first looks for the fil- and page header. After that, it
looks for the infimum and supremum records and from that
position it reads the existing user records. For that step, it is
important that the program knows the exact table structure
analyzed in the first step because it has to know the correct
offsets. The program will not only show the data, it will also
display the found bytes for further analysis.

This program is a basic software tool and can be
extended in many directions. Because of converting the data,
known structures and objects should be easier to analyze in
more detail. One can build a connection with the binary log,
which verifies the consistency of the data. Further uses could
involve an extended analysis, which can show the
differences between two states of a database. With this
extension, one could for example, analyze changes in the
storage files after executed operations.

REFERENCES
[1] Ryan Bannon, Alvin Chin, Faryaaz Kassam and Andrew Roszko

InnoDB Concrete Architecture, University of Waterloo 2002
[2] R. Bayer, The universal B-tree for multidimensional indexing:

General concepts, Worldwide Computing and Its Applications, vol.
1274, 1997B. Carrier, File System Forensic Analysis, Amsterdam:
Addison-Wesley Longman, 2005.

[3] D. Comer, Ubiquitous B-Tree, ACM Computing Surveys (CSUR)
archive, vol. 11 , no. 2, June 1979.

[4] K Eckstein, Forensics for Advanced UNIX File Systems, in
Proceedings of the 2004 IEEE Information Assurance Workshop,
2004.

[5] K. Eckstein and M. Jahnke, Data hiding in journaling file systems, in
Proceedings of the 2005 Digital Forensic Research Workshop
(DFRWS), 2005.

[6] Wolfgang Essmayr, Stefan Probst, and Edgar R.Weippl. Role-based
access controls: Status, dissemination, and prospects for generic
security mechanisms. International Journal of Electronic Commerce
Research, 4(1):127-156, 2004.

[7] Eva Gahleitner, Wernher Behrendt, Jürgen Palkoska, and Edgar R.
Weippl. On cooperatively creating dynamic ontologies. In
Proceedings of the 16th ACM Conference on Hypertext and
Hypermedia, Salzburg, Austria, September 2005. ACM. 2004.

[8] K. J. Jones, R. Bejtlich, and C. W. Rose, Real Digital Forensics:
Computer Security and Incident Response, Upper Saddle River:
Addison-Wesley Professional, 2005.

[9] Oscar Mangisengi, Wolfgang Essmayr, Johannes Huber, and Edgar
Weippl. Xmlbased olap query processing in a federated data
warehouses. In Proceedings of the 5th International Conference On
Enterprise Information Systems (ICEIS), France, April 2003.
reprinted as 'Towards XML OLAP Query in Federated Data
Warehouses' in a selection of best papers in the book Enterprise
Information Systems V, Edited by Olivier Camp, Joaquim B.L.
Filipe, Slimane Hammoudi, and Mario Piattini, ISBN 1-4020-1726-X
(HB) ISBN 1-4020-2673-0 (e-book) Kluwer, Netherlands,

[10] Martin S. Olivier, On metadata context in Database Forensics, Digital
Investigation Volume 5, Issues 3-4, March 2009, Pages 115-123

[11] Kyriacos Pavlou, Richard T. Snodgrass, Forensic Analysis of
Database Tampering, International Conference on Management of
Data, Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, SESSION: Authentication,
Pages: 109 - 120

[12] Rudolf Ramler, Klaus Wolfmaier, and Edgar Weippl. From
maintenance to evolutionary development of web applications: A
pragmatic approach. In Proceedings of ICWE 2004, LNCS Springer,
Munich, Germany, July 2004. Springer.

[13] Pachev Sasha. “Understanding MySQL Internals, O‘Reilly April
2007

[14] Patrick Stahlberg, Gerome Miklau, and Brian Neil Levine, Threats to
Privacy in the Forensic Analysis of Database Systems, University of
Massachusetts Amherst 2007

[15] C. Swenson, R. Phillips, and S. Shenoi, File System Journal
Forensics, Advances in Digital Forensics III, vol. 242, pp. 231-244,
2007.

[16] Heikki Tuuri, Calvin Sun “InnoDB Internals: InnoDB File Formats
and Source Code Structure“ MySQL Conference, April 2009

[17] Edgar R. Weippl and Wolfgang Essmayr. Personal trusted devices for
web services: Revisiting multilevel security. Mobile Networks and
Applications, Kluwer, 8(2):151-157, April 2003.
http://www.kluweronline.com/issn/1383-469X.

Internet Sources
[18] Structure of an InnoDB storage engine data file

http://forge.mysql.com/wiki/MySQL_Internals_InnoDB (07.07.2009)
[19] InnoDB File Structure and Primary key Tree Structure

http://www.bigdbahead.com/?p=142 (07.07.2009)
[20] InnoDB data structure - distribution in multiple files

http://www.siusic.com/wphchen/how-to-prevent-innodb-data-file-
keep-growing-156.html (07.07.2009)

[21] MySQL Internals File Formats
http://forge.mysql.com/wiki/MySQL_Internals_File_Formats
(07.07.2009)

[22] MySQL Internals Manual
http://faemalia.net/mysqlUtils/mysql-internals.pdf (10.07.2009)

[23] http://www.guidancesoftware.com/. [Accessed: May 29, 2009].
[24] http://www.sleuthkit.org/. [Accessed: May 29, 2009].

VI. APPENDIX
The files can be access at

http://www.ifs.tuwien.ac.at/~weippl/download/src.rar.

1. src/sql/table.cc - MySQL 5.1.32 Source Code
Initialization of the Headers of the .frm files at the function
create_frm()

2. src/include/mysql_version.h - MySQL 5.1.32 Source Code
General definitions like version numbers, version of the protocol etc.
(Template)

3. src/sql/handler.h - MySQL 5.1.32 Source Code
Definition of the constants of the MySQL Storage Engine

4. src/sql/unireg.cc - MySQL 5.1.32 Source Code
Creates field information of .frm files

5. files/Project.frm - MySQL .frm file of the table Project
Example used to explain the analysis of the table structure of MySQL

6. src/include/mysql_com.h - MySQL 5.1.32 Source Code
Definition of the constants of the MySQL data types of fields

7. src/storage/innobase/include/fil0fil.h - MySQL 5.1.32 Source Code
Definition of the offsets in the InnoDB data file

8. src/sql/structs.h - MySQL 5.1.32 Source Code
Definition of the structure KEY

9. src/include/my_base.h - MySQL 5.1.32 Source Code
Key algorithms

10. src/storage/innobase/include/page0page.h - MySQL 5.1.32 Source
Code Offsets of the page headers

11. src/storage/innobase/include/page0cur.c - MySQL 5.1.32 Source Code
Delete function for user records (function page_cur_delete_rec() - line
1340-1439)

12. analyze r - InnoDB data analyzation program
Self-developed program in Java 1.6.0

13. /src/include/my_global.h - MySQL 5.1.32 Source Code
IO_SIZE definition

