
Dark Clouds on the Horizon:
Using Cloud Storage as Attack Vector and Online Slack Space

Martin Mulazzani
SBA Research

Sebastian Schrittwieser
SBA Research

Manuel Leithner
SBA Research

Markus Huber
SBA Research

Edgar Weippl
SBA Research

Abstract

During the past few years, a vast number of online file
storage services have been introduced. While several of
these services provide basic functionality such as upload-
ing and retrieving files by a specific user, more advanced
services offer features such as shared folders, real-time
collaboration, minimization of data transfers or unlim-
ited storage space. Within this paper we give an overview
of existing file storage services and examine Dropbox,
an advanced file storage solution, in depth. We analyze
the Dropbox client software as well as its transmission
protocol, show weaknesses and outline possible attack
vectors against users. Based on our results we show that
Dropbox is used to store copyright-protected files from
a popular filesharing network. Furthermore Dropbox can
be exploited to hide files in the cloud with unlimited stor-
age capacity. We define this as online slack space. We
conclude by discussing security improvements for mod-
ern online storage services in general, and Dropbox in
particular. To prevent our attacks cloud storage opera-
tors should employ data possession proofs on clients, a
technique which has been recently discussed only in the
context of assessing trust in cloud storage operators.

1 Introduction

Hosting files on the Internet to make them retrievable
from all over the world was one of the goals when the
Internet was designed. Many new services have been
introduced in recent years to host various type of files
on centralized servers or distributed on client machines.
Most of today’s online storage services follow a very
simple design and offer very basic features to their users.
From the technical point of view, most of these services
are based on existing protocols such as the well known
FTP [28], proprietary protocols or WebDAV [22], an ex-
tension to the HTTP protocol.

With the advent of cloud computing and the shared

usage of resources, these centralized storage services
have gained momentum in their usage, and the number
of users has increased heavily. In the special case of on-
line cloud storage the shared resource can be disc space
on the provider’s side, as well as network bandwidth
on both the client’s and the provider’s side. An online
storage operator can safely assume that, besides private
files as well as encrypted files that are specific and
different for every user, a lot of files such as setup files
or common media data are stored and used by more than
one user. The operator can thus avoid storing multiple
physical copies of the same file (apart from redundancy
and backups, of course). To the best of our knowledge,
Dropbox is the biggest online storage service so far
that implements such methods for avoiding unnecessary
traffic and storage, with millions of users and billions
of files [24]. From a security perspective, however, the
shared usage of the user’s data raises new challenges.
The clear separation of user data cannot be maintained
to the same extent as with classic file hosting, and
other methods have to be implemented to ensure that
within the pool of shared data only authorized access
is possible. We consider this to be the most important
challenge for efficient and secure “cloud-based” storage
services. However, not much work has been previously
done in this area to prevent unauthorized data access or
information leakage.

We focus our work on Dropbox because it is the
biggest cloud storage provider that implements shared
file storage on a large scale. New services will offer sim-
ilar features with cost and time savings on both the client
and the operators side, which means that our findings are
of importance for all upcoming cloud storage services as
well. Our proposed measurements to prevent unautho-
rized data access and information leakage, exemplarily
demonstrated with Dropbox, are not specific to Dropbox
and should be used for other online storage services as
well. We believe that the number of cloud-based storage



operators will increase heavily in the near future.
Our contribution in this paper is to:

• Document the functionality of an advanced cloud
storage service with server-side data deduplication
such as Dropbox.

• Show under what circumstances unauthorized ac-
cess to files stored within Dropbox is possible.

• Assess if Dropbox is used to store copyright-
protected material.

• Define online slack space and the unique problems
it creates for the process of a forensic examination.

• Explain countermeasures, both on the client and the
server side, to mitigate the resulting risks from our
attacks for user data.

The remainder of this paper is organized as follows.
Related work and the technical details of Dropbox are
presented in Section 2. In Section 3 we introduce an at-
tack on files stored at Dropbox, leading to information
leakage and unauthorized file access. Section 4 discusses
how Dropbox can be exploited by an adversary in var-
ious other ways while Section 5 evaluates the feasibil-
ity of these attacks. We conclude by proposing various
techniques to reduce the attack surface for online storage
providers in Section 6.

2 Background

This section describes the technical details and imple-
mented security controls of Dropbox, a popular cloud
storage service. Most of the functionality is attributed
to the new cloud-paradigm, and not specific to Dropbox.
In this paper we use the notion of cloud computing as de-
fined in [9], meaning applications that are accessed over
the Internet with the hardware running in a data center
not necessarily under the control of the user:

“Cloud Computing refers to both the applica-
tions delivered as services over the Internet and
the hardware and systems software in the data
centers that provide those services.” ... “The
datacenter hardware and software is what we
will call a Cloud.”

In the following we describe Dropbox and related litera-
ture on cloud storage.

2.1 Dropbox
Since its initial release in September 2008 Dropbox
has become one of the most popular cloud storage
provider on the Internet. It has 10 million users and

stores more then 100 billion files as of May 2011 [2]
and saves 1 million files every 5 minutes [3]. Dropbox
is mainly an online storage service that can be used
to create online backups of files, and one has access
to files from any computer or similar device that is
connected to the Internet. A desktop client software
available for different operating systems keeps all the
data in a specified directory in sync with the servers, and
synchronizes changes automatically among different
client computers by the same user. Subfolders can be
shared with other Dropbox users, and changes in shared
folders are synced and pushed to every Dropbox account
that has been given access to that shared folder. Large
parts of the Dropbox client are written in Python.

Internally, Dropbox does not use the concept of files,
but every file is split up into chunks of up to 4 megabytes
in size. When a user adds a file to his local Dropbox
folder, the Dropbox client application calculates the hash
values of all the chunks of the file using the SHA-256
algorithm [19]. The hash values are then sent to the
server and compared to the hashes already stored on
the Dropbox servers. If a file does not exist in their
database, the client is requested to upload the chunks.
Otherwise the corresponding chunk is not sent to the
server because a copy is already stored. The existing file
on the server is instead linked to the Dropbox account.
This approach allows Dropbox to save traffic and storage
costs, and users benefit from a faster syncing process
if files are already stored on the Dropbox servers. The
software uses numerous techniques to further enhance
efficiency e.g., delta encoding, to only transfer those
parts of the files that have been modified since the
last synchronization with the server. If by any chance
two distinct files should have the same hash value, the
user would be able to access other users content since
the file stored on the servers is simply linked to the
users Dropbox account. However, the probability of a
coincidental collision in SHA-256 is negligibly small.

The connections between the clients and the Drop-
box servers are secured with SSL. Uploaded data is
encrypted with AES-256 and stored on Amazons S3
storage service that is part of the Amazon Web Services
(AWS) [1]. The AES key is user independent and only
secures the data during storage at Amazon S3, while
transfer security relies on SSL. Our research on the
transmission protocol showed that data is directly sent
to Amazon EC2 servers. Therefore, encryption has to
be done by EC2 services. We do not know where the
keys are stored and if different keys are used for each
file chunk. However, the fact that encryption and storage
is done at the same place seems questionable to us, as

2



Amazon is most likely able to access decryption keys 1.

After uploading the chunks that were not yet in the
Dropbox storage system, Dropbox calculates the hash
values on their servers to validate the correct transmis-
sion of the file, and compares the values with the hash
values sent by the client. If the hash values do not match,
the upload process of the corresponding chunk is re-
peated. The drawback of this approach is that the server
can only calculate the hash values of actually uploaded
chunks; it is not able to validate the hash values of files
that were already on Dropbox and that were provided by
the client. Instead, it trusts the client software and links
the chunk on the server to the Dropbox account. There-
fore, spoofing the hash value of a chunk added to the
local Dropbox folder allows a malicious user to access
files of other Dropbox users, given that the SHA-256
hash values of the file’s chunks are known to the attacker.

Due to the recent buzz in cloud computing many com-
panies compete in the area of cloud storage. Major op-
erating system companies have introduced their services
with integration into their system, while small startups
can compete by offering cross-OS functionality or more
advanced security features. Table 1 compares a selec-
tion of popular file storage providers without any claim
for completeness. Note that “encrypted storage” means
that the file is encrypted locally before it is sent to the
cloud storage provider and shared storage means that it
is possible to share files and folders between users.

2.2 Related Work

Related work on secure cloud storage focuses mainly
on determining if the cloud storage operator is still in
possession of the client’s file, and if it has been modified.
An interesting survey on the security issues of cloud
computing in general can be found in [31]. A summary
of attacks and new security problems that arise with the
usage of cloud computing has been discussed in [17].
In a paper by Shacham et al. [29] it was demonstrated
that it is rather easy to map the internal infrastructure of
a cloud storage operator. Furthermore they introduced
co-location attacks where they have been able to place
a virtual machine under their control on the same
hardware as a target system, resulting in information
leakage and possible side-channel attacks on a virtual
machine.

1Independently found and confirmed by Christopher Soghoian [5]
and Ben Adida [4]

Early publications on file retrievability [25, 14] check
if a file can be retrieved from an untrusted third party
without retransmitting the whole file. Various papers
propose more advanced protocols [11, 12, 20] to ensure
that an untrusted server has the original file without
retrieving the entire file, while maintaining an overall
overhead of O(1). Extensions have been published
that allow checking of dynamic data, for example
Wang et al. [33] use a Merkle hash tree which allows
a third party auditor to audit for malicious providers
while allowing public verifiability as well as dynamic
data operations. The use of algebraic signatures was
proposed in [30], while a similar approach based on ho-
momorphic tokens has been proposed in [32]. Another
cryptographic tree structure is named “Cryptree” [23]
and is part of the Wuala online storage system. It
allows strong authentication by using encryption and
can be used for P2P networks as well as untrusted
cloud storage. The HAIL system proposed in [13]
can be seen as an implementation of a service-oriented
version of RAID across multiple cloud storage operators.

Harnik et al. describe similar attacks in a recent pa-
per [24] on cloud storage services which use server-side
data deduplication. They recommend using encryption
to stop server-side data deduplication, and propose a ran-
domized threshold in environments where encryption is
undesirable. However, they do not employ client-side
data possession proofs to prevent hash manipulation at-
tacks, and have no practical evaluation for their attacks.

3 Unauthorized File Access

In this section we introduce three different attacks on
Dropbox that enable access to arbitrary files given
that the hash values of the file, respectively the file
chunks, are known. If an arbitrary cloud storage service
relies on the client for hash calculation in server-side
data deduplication implementations, these attacks are
applicable as well.

3.1 Hash Value Manipulation Attack
For the calculation of SHA-256 hash values, Drop-
box does not use the hashlib library which is part
of Python. Instead it delegates the calculation to
OpenSSL [18] by including a wrapper library called
NCrypto [6]. The Dropbox clients for Linux and Mac
OS X dynamically link to libraries such as NCrypto
and do not verify their integrity before using them. We
modified the publicly available source code of NCrypto
so that it replaces the hash value that was calculated by
OpenSSL with our own value (see Figure 1), built it

3



Name Protocol Encrypted transmission Encrypted storage Shared storage
Dropbox proprietary yes no yes
Box.net proprietary yes yes (enterprise only) yes
Wuala Cryptree yes yes yes

TeamDrive many yes yes yes
SpiderOak proprietary yes yes yes

Windows Live Skydrive WebDAV yes no yes
Apple iDisk WebDAV no no no
Ubuntu One u1storage yes no yes

Table 1: Online Storage Providers

and replaced the library that was shipped with Dropbox.
The Dropbox client does not detect this modification
and transmits for any new file in the local Dropbox the
modified hash value to the server. If the transmitted
hash value does not exist in the server’s database, the
server requests the file from the client and tries to verify
the hash value after the transmission. Because of our
manipulation on the client side, the hash values will
not match and the server would detect that. The server
would then re-request the file to overcome an apparent
transmission error.

Dropbox-Client
(Python)

Modified 
NCrypto
(wrapper)

SHA-256

OpenSSL
(hash value calculation)

replacing
hash value

Figure 1: Hash Value Manipulation Attack

However, if the hash value is already in the server’s
databases the server trusts the hash value calculation of
the client and does not request the file from the client.
Instead it links the corresponding file/chunk to the
Dropbox account. Due to the manipulation of the hash
value we thus got unauthorized access to arbitrary files.

This attack is completely undetectable to the user. If

the attacker already knows the hash values, he can down-
load files directly from the Dropbox server and no inter-
action with the client is needed which could be logged or
detected on the client side. The victim is unable to notice
this in any way, as no access to his computer is required.
Even for the Dropbox servers this unauthorized access to
arbitrary files is not detectable because they believe the
attacker already owns the files, and simply added them
to their local Dropbox folder.

3.2 Stolen Host ID Attack

During setup of the Dropbox client application on a
computer or smartphone, a unique host ID is created
which links that specific device to the owner’s Dropbox
account. The client software does not store username
and password. Instead, the host ID is used for client
and user authentication. It is a random looking 128-bit
key that is calculated by the Dropbox server from
several seeding values provided by the client (e.g.
username, exact date and time). The algorithm is not
publicly known. This linking requires the user’s account
credentials. When the client on that host is success-
fully linked, no further authentication is required for
that host as long as the Dropbox software is not removed.

If the host ID is stolen by an attacker, extracted by
malware or by social engineering, all the files on that
users accounts can be downloaded by the attacker. He
simply replaces his own host ID with the stolen one, re-
syncs Dropbox and consequently downloads every file.

3.3 Direct Download Attack

Dropbox’s transmission protocol between the client
software and the server is built on HTTPS. The client
software can request file chunks from https://dl-
clientXX.dropbox.com/retrieve (where XX is replaced
by consecutive numbers) by submitting the SHA-256
hash value of the file chunk and a valid host ID as
HTTPS POST data. Surprisingly, the host ID doesn’t
even need to be linked to a Dropbox account that owns

4



the corresponding file. Any valid host ID can be used
to request a file chunk as long as the hash value of the
chunk is known and the file is stored at Dropbox. As
we will see later, Dropbox hardly deletes any data. It
is even possible to just create an HTTPS request with
any valid host ID, and the hash value of the chunk to
be downloaded. This approach could be easily detected
by Dropbox because a host ID that was not used to
upload a chunk or is known to be in possession of the
chunk would try to download it. By contrast the hash
manipulation attack described above is undetectable for
the Dropbox server, and (minor) changes to the core
communication protocol would be needed to detect it.

3.4 Attack Detection

To sum up, when an attacker is able to get access to the
content of the client database, he is able to download all
the files of the corresponding Dropbox account directly
from the Dropbox servers. No further access to the vic-
tim’s system is needed, and in the simplest case only the
host ID needs to be sent to the attacker. An alternative
approach for the attacker is to access only specific files,
by obtaining only the hash values of the file. The owner
of the files is unable to detect that the attacker accessed
the files, for all three attacks. From the cloud storage ser-
vice operators point of view, the stolen host-ID attack as
well as the direct download attack are detectable to some
extent. We discuss some countermeasures in section 6.
However, by using the hash manipulation attack the at-
tacker can avoid detection completely, as this form of
unauthorized access looks like the attacker already owns
the file to Dropbox. Table 2 gives an overview of all of
the different attacks that can lead to unauthorized file ac-
cess and information leakage 2.

4 Attack Vectors and Online Slack Space

This section discusses known attack techniques to exploit
cloud storage and Dropbox on a large scale. It outlines
already known attack vectors, and how they could be
used with the help of Dropbox, or any other cloud stor-
age service with weak security. Most of them can have
a severe impact and should be considered in the threat
model of such services.

2We communicated with Dropbox and reported our findings prior
to publishing this paper. They implemented a temporary fix to prevent
these types of attacks and will include a permanent solution in future
versions.

4.1 Hidden Channel, Data Leakage
The attacks discussed above can be used in numerous
ways to attack clients, for example by using Dropbox
as a drop zone for important and possibly sensitive data.
If the victim is using Dropbox (or any other cloud stor-
age services which is vulnerable to our discovered at-
tack) these services might be used to exfiltrate data a lot
stealthier and faster with a covert channel than using reg-
ular covert channels [16]. The amount of data that needs
to be sent over the covert channel would be reduced to a
single host ID or the hash values of specific files instead
of the full file. Furthermore the attacker could copy im-
portant files to the Dropbox folder, wait until they are
stored on the cloud service and delete them again. After-
wards he transmits the hash values to the attacker and the
attacker then downloads these files directly from Drop-
box. This attack requires that the attacker is able to exe-
cute code and has access to the victim’s file system e.g.
by using malware. One might argue that these are tough
preconditions for this scenario to work. However, as in
example, in the case of corporate firewalls this kind of
data leakage is much harder to detect as all traffic with
Dropbox is encrypted with SSL and the transfers would
blend in perfectly with regular Dropbox activity, since
Dropbox itself is used for transmitting the data. Cur-
rently the client has no control measures to decide upon
which data might get stored in the Dropbox folder. The
scheme for leaking information and transmitting data to
an attacker is depicted in Figure 2.

Victim using Dropbox

Attackers PC

1. Steal hashes
2. Send hashes to Attacker

3. Link hashes with 

fake client

4. Download all files 

of the victim

Figure 2: Covert Channel with Dropbox

4.2 Online Slack Space
Uploading a file works very similarly to downloading
with HTTPS (as described above, see section 3.3). The
client software uploads a chunk to Dropbox by calling
https://dl-clientXX.dropbox.com/store with the hash
value and the host ID as HTTPS POST data along with
the actual data. After the upload is finished, the client

5



Method Detectability Consequences
Hash Value Manipulation Attack Undetectable Unauthorized file access
Direct Download Attack Dropbox only Unauthorized file access
Stolen Host ID Attack Dropbox only Get all user files

Table 2: Variants of the Attack

software links the uploaded files to the host ID with
another HTTPS request. The updated or newly added
files are now pushed to all computers of the user, and to
all other user accounts if the folder is a shared folder.

A modified client software can upload files without
limitation, if the linking step is omitted. Dropbox can
thus be used to store data without decreasing the avail-
able amount of data. We define this as online slack space
as it is similar to regular slack space [21] from the per-
spective of a forensic examiner where information is hid-
den in the last block of files on the filesystem that are not
using the entire block. Instead of hiding information in
the last block of a file, data is hidden in Dropbox chunks
that are not linked to the attackers account. If used in
combination with a live CD operating system, no traces
are left on the computer that could be used in the foren-
sic process to infer the existence of that data once the
computer is powered down. We believe that there is no
limitation on how much information could be hidden, as
the exploited mechanisms are the same as those which
are used by the Dropbox application.

4.3 Attack Vector
If the host ID is known to an attacker, he can upload
and link arbitrary files to the victim’s Dropbox account.
Instead of linking the file to his account with the second
HTTPS request, he can use an arbitrary host ID with
which to link the file. In combination with an exploit
of the operating system file preview functions, e.g. on
one of the recent vulnerabilities in Windows 3, Linux 4,
or MacOS 5, this becomes a powerful exploitation
technique. An attacker could use any 0-day weakness
in the file preview of supported operating systems to
execute code on the victim’s computer, by pushing a
manipulated file into his Dropbox folder and waiting for
the user to open that directory. Social engineering could
additionally be used to trick the victim into executing a
file with a promising filename.

To get access to the host ID in the first place is tricky,
and in any case access to the filesystem is needed in
the first place. This however does not reduce the conse-

3Windows Explorer: CVE-2010-2568 or CVE-2010-3970
4Evince in Nautilus: CVE-2010-2640
5Finder: CVE-2006-2277

quences, as it is possible to store files remotely in other
peoples Dropbox. A large scale infection using Drop-
box is however very unlikely, and if an attacker is able to
retrieve the host ID he already owns the system.

5 Evaluation

This section studies some of the attacks introduced. We
evaluate whether Dropbox is used to store popular files
from the filesharing network thepiratebay.org 6 as well as
how long data is stored in the previously defined online
slack space.

5.1 Stored files on Dropbox
With the hash manipulation attack and the direct down-
load attack described above it becomes possible to test
if a given file is already stored on Dropbox. We used
that to evaluate if Dropbox is used for storing filesharing
files, as filesharing protocols like BitTorrent rely heavily
on hashing for file identification. We downloaded the top
100 torrents from thepiratebay.org [7] as of the middle of
September 2010. Unfortunately, BitTorrent uses SHA-1
hashes to identify files and their chunks, so the informa-
tion in the .torrent file itself is not sufficient and we had
to download parts of the content. As most of the files
on BitTorrent are protected by copyright, we decided to
download every file from the .torrent that lacks copyright
protection to protect us from legal complaints, but are
still sufficient to prove that Dropbox is used to store these
kind of files. To further proctect us against complaints
based on our IP address, our BitTorrent client was modi-
fied to prevent upload of any data, as described similarly
in [27]. We downloaded only the first 4 megabytes of any
file that exceeds this size, as the first chunk is already suf-
ficient to tell if a given file is stored on Dropbox or not
using the hash manipulation attack.

We observed the following different types of files that
were identified by the .torrent files:

• Copyright protected content such as movies, songs
or episodes of popular series.

• “Identifying files” that are specific to the copyright
protected material, such as sample files, screen cap-
tures or checksum files, but without copyright.

6Online at http://thepiratebay.org

6

http://thepiratebay.org


• Static files that are part of many torrents, such as
release group information files or links to websites.

Those “identifying files” we observed had the follow-
ing extensions and information:

• .nfo: Contains information from the release group
that created the .torrent e.g., list of files, installation
instructions or detailed information and ratings for
movies.

• .srt: Contains subtitles for video files.

• .sfv: Contains CRC32 checksums for every file
within the .torrent.

• .jpg: Contains screenshots of movies or album cov-
ers.

• .torrent: The torrent itself contains the hash values
of all the files, chunks as well as necessary tracker
information for the clients.

In total from those top 100 torrent archives, 98 con-
tained identifying files. We removed the two .torrents
from our test set that did not contain such identifying
files. 24 hours later we downloaded the newest entries
from the top 100 list, to check how long it takes from the
publication of a torrent until it is stored on Dropbox. 9
new torrents, mostly series, were added to the test set. In
Table 3 we show in which categories they where catego-
rized by thepiratebay.org.

Category Quantity
Application 3

Game 5
Movie 64
Music 6
Series 29

Sum 107

Table 3: Distribution of tested .torrents

When we downloaded the “identifying files” from
these 107 .torrent, they had in total approximately 460k
seeders and 360k leechers connected (not necessarily
disjoint), with the total number of complete downloads
possibly much higher. For every .torrent file and every
identifying file from the .torrent’s content we generated
the sha256 hash value and checked if the files were stored
on Dropbox, in total 368 hashes. If the file was bigger
then 4 megabytes, we only generated the hash of the first
chunk. Our script did not use the completely stealthy ap-
proach described above, but the less stealthy approach
by creating an HTTPS request with a valid host ID as the
overall stealthiness was in our case not an issue.

From those 368 hashes, 356 files were retrievable,
only 12 hashes were unknown to Dropbox and the cor-
responding files were not stored on Dropbox. Those 12
files were linked to 8 .torrent files. The details:

• In one case the identifying file of the .torrent was
not on Dropbox, but the .torrent file was.

• In three cases the .torrent file was not on Dropbox,
but the identifying files were.

• In four cases the .nfo file was not on Dropbox, but
other iIn fact, it might be the case that only one per-
son uses Dropbox to store these files. dentifying
files from the same .torrent were.

This means that for every .torrent either the .torrent
file, the content or both are easily retrievable from Drop-
box once the hashes are known. Table 4 shows the num-
bers in details, where hit rate describes how many of
them were retrievable from Dropbox.

File Quantity Hitrate Hitrate rel.
.torrent: 107 106 99%

.nfo: 53 49 92%
others: 208 201 97%

In total: 368 356 97%

Table 4: Hit rate for filesharing

Furthermore we analyzed the age of the .torrents to
see how quick Dropbox users are to download the .tor-
rents and the corresponding content, and to upload ev-
erything to Dropbox. Most of the .torrent files were rela-
tively young, as approximately 20 % of the top 100 .tor-
rent files were less than 24 hours on piratebay before we
were able to retrieve them from Dropbox. Figure 3 shows
the distribution of age from all the .torrents:

5.2 Online Slack Space Evaluation
To assess if Dropbox could be used to hide files by
uploading without linking them to any user account, we
generated a set of 30 files with random data and uploaded
them with the HTTPS request method. Furthermore we
uploaded 55 files with a regular Dropbox account and
deleted them right afterwards, to assess if Dropbox ever
deletes old user data. We furthermore evaluated if there
is some kind of garbage collection that removes files
after a given threshold of time since the upload. The
files were then downloaded every 24 hours and checked
for consistency by calculating multiple hash functions
and comparing the hashvalues. By using multiple files
with various sizes and random content we minimized the
likelihood of an unintended hash collision and avoided
testing for a file that is stored by another user and thus

7



Figure 3: Age of .torrents

always retrievable. Table 5 summarizes the setup.

Method of upload # Testduration Hitrate
Regular folder 25 6 months 100%
Shared folder 30 6 months 100%

HTTPS request 30 >3 months 50%
In total: 85 — 100%

Table 5: Online slack experiments

Long term undelete: With the free account users
can undo file modifications or undelete files through
the webinterface from the last 30 days. With a so
called “Pro” account (where the users pay for additional
storage space and other features) undelete is available
for all files and all times. We uploaded 55 files in total
on October 7th 2010, 30 files in a shared folder with
another Dropbox account and 25 files in an unshared
folder. Until Dropbox fixed the HTTPS download attack
at the end of April 2011, 100% have been constantly
available. More then 6 months after uploading, all files
were still retrievable, without exception.

Online slack: We uploaded 30 files of various sizes
without linking them to any account with the HTTPS
method at the beginning of January 2011. More then 4
weeks later, all files were still retrievable. When Drop-
box fixed the HTTPS download attack in late April 2011,
50% of the files were still available. See Figure 4 for de-
tails.

5.3 Discussion
It surprised us that from every .torrent file, either the
.torrent, the content or both could be retrieved from

03
.0
1.
20

11

17
.0
1.
20

11

31
.0
1.
20

11

14
.0
2.
20

11

28
.0
2.
20

11

14
.0
3.
20

11

28
.0
3.
20

11

11
.0
4.
20

11

25
.0
4.
20

11
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 4: Online slack without linking over time

Dropbox, especially considering that some of the
.torrent files were only a few hours created before we
retrieved them. 97% means that Dropbox is heavily
used for storing files from filesharing networks. It is
also interesting to note that some of the .torrent files
contained more content regarding storage space than
the free Dropbox account currently offers (2 gigabytes
at the time of writing). 11 out of the set of tested 107
.torrents contained more then 2 gigabytes as they were
DVD images, the biggest with 7.2 gigabytes in total size.
This means that whoever stored those files on Dropbox
has either a Dropbox Pro account (for which he or she
pays a monthly fee), or that he invited a lot of friends to
get additional storage space from the Dropbox referral
program.

However, we could only infer the existence of these
files. With the approach we used it is not possible to
quantify to what extent Dropbox is used for filesharing
among multiple users. Our results only show that within
the last three to six months at least one Bittorrent user
saved his downloads in Dropbox, respectively that since
the .torrent has been created. No conclusions can be
drawn as to whether they are saved in shared folders, or
if only one person or possibly thousands of people uses
Dropbox in that way. In fact, it is equally likely that a
single person uses Dropbox to store these files.

With our experiments regarding online slack space we
showed that it is very easy to hide data on Dropbox with
low accountability. It becomes rather trivial to get some
of the advanced features of Dropbox like unlimited un-
delete and versioning, without costs. Furthermore a ma-
licious user can upload files without linking them to his
account, resulting in possibly unlimited storage space

8



while at the same time possibly causing problems in a
standard forensic examination. In an advanced setup, the
examinator might be confronted with a computer that has
no harddrive, booting from read only media such as a
Linux live CD and saving all files in online slack space.
No traces or local evidence would be extractable from the
computer [15], which will be an issue in future forensic
examinations. This is similar to using the private mode
in modern browsers which do not save information lo-
cally [8].

6 Keeping the cloud white

To ensure trust in cloud storage operators it is vital to not
only make sure that the untrusted cloud storage operator
keeps the files secure with regards to availability [25],
but also to ensure that the client cannot get attacked with
these services. We provide generic security recommen-
dations for all storage providers to prevent our attacks,
and propose changes to the communication protocol of
Dropbox to include data possession proofs that can be
precalculated on the cloud storage operato’rs side and
implemented efficiently as database lookups.

6.1 Basic security primitives

Our attacks are not only applicable to Dropbox, but
to all cloud storage services where a server-side data
deduplication scheme is used to prevent retransmission
of files that are already stored at the provider. Current
implementations are based on simple hashing. However,
the client software cannot be trusted to calculate the
hash value correctly and a stronger proof of ownership
is needed. This is a new security aspect of cloud
computing, as up till now mostly trust in the service
operator was an issue, and not the client.

To ensure that the client is in possession of a file, a
strong protocol for provable data possession is needed,
based on either cryptography or probabilistic proofs or
both. This can be done by using a recent provable data
possession algorithm such as [11], where the cloud stor-
age operator selects which challenges the client has to
answer to get access to the file on the server and thus
omit the retransmission which is costly for both the client
and the operator. Recent publications proposed different
approaches with varying storage and computational over-
head [12, 20, 10]. Furthermore every service should use
SSL for all communication and data transfers, something
which we observed was not the case with every service.

6.2 Secure Dropbox

To fix the discovered security issues in Dropbox we
propose several steps to mitigate the risk of abuse.
First of all, a secure data possession protocol should
be used to prevent the clients to get access to files
only by knowing the hash value of a file. Eventually
every cloud storage operator should employ such a
protocol if the client is not part of a trusted environment.
We therefore propose the implementation of a simple
challenge-response mechanism as outlined in Fig. 5.
In essence: If the client transmits a hash value already
known to the storage operator, the server has to verify
if the client is in possession of the entire file or only
the hash value. The server could do so by requesting
randomly chosen bytes from the data during the upload
process. Let H be a cryptographic hash function which
maps data D of arbitrary length to fixed length hash
value.
Pushinit(U, p(U), H(D)) is a function that initiates the
upload of data D from the client to the server. The user
U and an authentication token p(U) are sent along with
the hash value H(D) of data D. Push(U, p(U), D) is
the actual uploading process of data D to the server.
Req(U, p(U), H(D)) is a function that requests data D
from the server.
V er(V eroff , H(D)) is a function that requests ran-
domly chosen bytes from data D by specifying their
offsets in the array V eroff .

Uploading chunks without linking them to a users

server:machineclient:machine

pushinit(U,p(U),H(D))

ver(Veroff,H(D))

sendBytes(VerBytes,H(D))

storage management:process

sendHashvalue(H(D)) determineAvailability(H(D))

sendLinkingRequest(U,H(D)) linkUserToData(U,D)

returnCRPairs(VerBytes,Veroff,H(D))

Figure 5: Data verification during upload

Dropbox should not be allowed, on the one hand to
prevent clients to have unlimited storage capacity, on
the other hand to make online slack space on Dropbox
infeasible. In many scenarios it is still cheaper to just
add storage capacity instead of finding a reliable metric
on what data to delete - however, to prevent misuse of
historic data and online slackspace, all chunks that are
not linked to a file that is retrievable by a client should
be deleted.

To further enhance security several behavioral aspects

9



Security Measure Consequences
1. Data possession protocol Prevent hash manipulation attacks
2. No chunks without linking Defy online slack space
3. Check for host ID activity Prevent access if host is not online
4. Dynamic host ID Smaller window of opportunity
5. Enforcement of data ownership No unauthorized data access

Table 6: Security Improvements for Dropbox

can be leveraged, for example to check for host ID
activity - if a client turns on his computer he connects
to Dropbox to see if any file has been updated or new
files were added. Afterwards, only that IP address
should be allowed to download files from that host IDs
Dropbox. If the user changes IP e.g., by using a VPN
or changing location, Dropbox needs to rebuild the
connection anyway and could use that to link that host
ID to that specific IP. In fact, the host ID should be used
like a cookie [26] if used for authentication, dynamic
in nature and changeable. A dynamic host ID would
reduce the window of opportunity that an attacker could
use to clone a victim’s Dropbox by stealing the host ID.
Most importantly, Dropbox should keep track of which
files are in which Dropboxes (enforcement of data
ownership). If a client downloads a chunk that has not
been in his or her Dropbox, this is easily detectable for
Dropbox.

Unfortunately we are unable to assess the performance
impact and communication overhead of our mitigation
strategies, but we believe that most of them can be im-
plemented as simple database lookups. Different data
possession algorithms have already been studied for their
overhead, for example S-PDP and E-PDP from [11] are
bounded by O(1). Table 6 summarizes all needed miti-
gation steps to prevent our attacks.

7 Conclusion

In this paper we presented specific attacks on cloud stor-
age operators where the attacker can download arbitrary
files under certain conditions. We proved the feasibil-
ity on the online storage provider Dropbox and showed
that Dropbox is used heavily to store data from thepi-
ratebay.org, a popular BitTorrent website. Furthermore
we defined and evaluated online slack space and demon-
strated that it can be used to hide files. We believe that
these vulnerabilities are not specific to Dropbox, as the
underlying communication protocol is straightforward
and very likely to be adopted by other cloud storage op-
erators to save bandwidth and storage overhead. The dis-
cussed countermeasures, especially the data possession
proof on the client side, should be included by all cloud
storage operators.

Acknowledgements

We would like to thank Arash Ferdowsi and Lorcan Mor-
gan for their helpful comments. Furthermore we would
like to thank the reviewers for their feedback. This work
has been supported by the Austrian Research Promotion
Agency under grant 825747 and 820854.

References
[1] Amazon.com, Amazon Web Services (AWS). Online at

http://aws.amazon.com.

[2] At Dropbox, Over 100 Billion Files Served–And
Counting, retrieved May 23rd, 2011. Online at
http://gigaom.com/2011/05/23/at-dropbox-over-100-billion-
files-served-and-counting/.

[3] Dropbox Users Save 1 Million Files Every 5
Minutes, retrieved May 24rd, 2011. Online at
http://mashable.com/2011/05/23/dropbox-stats/.

[4] Grab the pitchforks!... again, retrieved April 19th, 2011. Online
at http://benlog.com/articles/2011/04/19/grab-the-pitchforks-
again/.

[5] How Dropbox sacrifices user privacy for cost sav-
ings, retrieved April 12th, 2011. Online at
http://paranoia.dubfire.net/2011/04/how-dropbox-sacrifices-
user-privacy-for.html.

[6] NCrypto Homepage, retrieved June 1st, 2011. Online at
http://ncrypto.sourceforge.net/.

[7] Piratebay top 100. Online at http://thepiratebay.org/top/all.

[8] AGGARWAL, G., BURSZTEIN, E., JACKSON, C., AND BONEH,
D. An analysis of private browsing modes in modern browsers. In
Proceedings of the 19th USENIX conference on Security (2010),
USENIX Security’10.

[9] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D.,
KATZ, R., KONWINSKI, A., LEE, G., PATTERSON, D.,
RABKIN, A., STOICA, I., AND ZAHARIA, M. A view of cloud
computing. Communications of the ACM 53, 4 (2010), 50–58.

[10] ATENIESE, G., BURNS, R., CURTMOLA, R., HERRING, J.,
KHAN, O., KISSNER, L., PETERSON, Z., AND SONG, D.
Remote data checking using provable data possession. ACM
Transactions on Information and System Security (TISSEC) 14,
1 (2011), 12.

[11] ATENIESE, G., BURNS, R., CURTMOLA, R., HERRING, J.,
KISSNER, L., PETERSON, Z., AND SONG, D. Provable data
possession at untrusted stores. In Proceedings of the 14th ACM
conference on Computer and communications security (2007),
CCS ’07, ACM, pp. 598–609.

[12] ATENIESE, G., DI PIETRO, R., MANCINI, L., AND TSUDIK, G.
Scalable and Efficient Provable Data Possession. In Proceedings
of the 4th international conference on Security and privacy in
communication netowrks (2008), ACM, pp. 1–10.

10



[13] BOWERS, K., JUELS, A., AND OPREA, A. HAIL: A high-
availability and integrity layer for cloud storage. In Proceedings
of the 16th ACM conference on Computer and communications
security (2009), ACM, pp. 187–198.

[14] BOWERS, K., JUELS, A., AND OPREA, A. Proofs of retrievabil-
ity: Theory and implementation. In Proceedings of the 2009 ACM
workshop on Cloud computing security (2009), ACM, pp. 43–54.

[15] BREZINSKI, D., AND KILLALEA, T. Guidelines for Evidence
Collection and Archiving (RFC 3227). Network Working Group,
The Internet Engineering Task Force (2002).

[16] CABUK, S., BRODLEY, C. E., AND SHIELDS, C. Ip covert
timing channels: design and detection. In Proceedings of the
11th ACM conference on Computer and communications secu-
rity (2004), CCS ’04, pp. 178–187.

[17] CHOW, R., GOLLE, P., JAKOBSSON, M., SHI, E., STADDON,
J., MASUOKA, R., AND MOLINA, J. Controlling data in the
cloud: outsourcing computation without outsourcing control. In
Proceedings of the 2009 ACM workshop on Cloud computing se-
curity (2009), ACM, pp. 85–90.

[18] COX, M., ENGELSCHALL, R., HENSON, S., LAURIE, B.,
YOUNG, E., AND HUDSON, T. Openssl, 2001.

[19] EASTLAKE, D., AND HANSEN, T. US Secure Hash Algorithms
(SHA and HMAC-SHA). Tech. rep., RFC 4634, July 2006.

[20] ERWAY, C., KÜPCÜ, A., PAPAMANTHOU, C., AND TAMASSIA,
R. Dynamic Provable Data Possession. In Proceedings of the
16th ACM conference on Computer and communications security
(2009), ACM, pp. 213–222.

[21] GARFINKEL, S., AND SHELAT, A. Remembrance of data
passed: A study of disk sanitization practices. Security & Pri-
vacy, IEEE 1, 1 (2003), 17–27.

[22] GOLAND, Y., WHITEHEAD, E., FAIZI, A., CARTER, S., AND
JENSEN, D. HTTP Extensions for Distributed Authoring–
WEBDAV. Microsoft, UC Irvine, Netscape, Novell. Internet Pro-
posed Standard Request for Comments (RFC) 2518 (1999).

[23] GROLIMUND, D., MEISSER, L., SCHMID, S., AND WATTEN-
HOFER, R. Cryptree: A folder tree structure for cryptographic
file systems. In Reliable Distributed Systems, 2006. SRDS’06.
25th IEEE Symposium on (2006), IEEE, pp. 189–198.

[24] HARNIK, D., PINKAS, B., AND SHULMAN-PELEG, A. Side
channels in cloud services: Deduplication in cloud storage. Se-
curity & Privacy, IEEE 8, 6 (2010), 40–47.

[25] JUELS, A., AND KALISKI JR, B. PORs: Proofs of retrievability
for large files. In Proceedings of the 14th ACM conference on
Computer and communications security (2007), ACM, pp. 584–
597.

[26] KRISTOL, D. HTTP Cookies: Standards, privacy, and politics.
ACM Transactions on Internet Technology (TOIT) 1, 2 (2001),
151–198.

[27] PIATEK, M., KOHNO, T., AND KRISHNAMURTHY, A. Chal-
lenges and directions for monitoring P2P file sharing networks-
or: why my printer received a DMCA takedown notice. In Pro-
ceedings of the 3rd conference on Hot topics in security (2008),
USENIX Association, p. 12.

[28] POSTEL, J., AND REYNOLDS, J. RFC 959: File transfer proto-
col. Network Working Group (1985).

[29] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,
S. Hey, you, get off of my cloud: exploring information leakage
in third-party compute clouds. In Proceedings of the 16th ACM
conference on Computer and communications security (2009),
ACM, pp. 199–212.

[30] SCHWARZ, T., AND MILLER, E. Store, forget, and check: Using
algebraic signatures to check remotely administered storage. In
Distributed Computing Systems, 2006. ICDCS 2006. 26th IEEE
International Conference on (2006), IEEE, p. 12.

[31] SUBASHINI, S., AND KAVITHA, V. A survey on security issues
in service delivery models of cloud computing. Journal of Net-
work and Computer Applications (2010).

[32] WANG, C., WANG, Q., REN, K., AND LOU, W. Ensuring data
storage security in cloud computing. In Quality of Service, 2009.
IWQoS. 17th International Workshop on (2009), Ieee, pp. 1–9.

[33] WANG, Q., WANG, C., LI, J., REN, K., AND LOU, W. En-
abling public verifiability and data dynamics for storage security
in cloud computing. Computer Security–ESORICS 2009 (2010),
355–370.

11


	Introduction
	Background
	Dropbox
	Related Work

	Unauthorized File Access
	Hash Value Manipulation Attack
	Stolen Host ID Attack
	Direct Download Attack
	Attack Detection

	Attack Vectors and Online Slack Space
	Hidden Channel, Data Leakage
	Online Slack Space
	Attack Vector

	Evaluation
	Stored files on Dropbox
	Online Slack Space Evaluation
	Discussion

	Keeping the cloud white
	Basic security primitives
	Secure Dropbox

	Conclusion

