
SHPF: Enhancing HTTP(S) Session Security with Browser Fingerprinting

Thomas Unger
FH Campus Wien

Vienna, Austria

Martin Mulazzani, Dominik Frühwirt,
Markus Huber, Sebastian Schrittwieser, Edgar Weippl

SBA Research
Vienna, Austria

Email: (1stletterfirstname)(lastname)@sba-research.org

Abstract—Session hijacking has become a major problem
in today’s Web services, especially with the availability of free
off-the-shelf tools. As major websites like Facebook, Youtube
and Yahoo still do not use HTTPS for all users by default,
new methods are needed to protect the users’ sessions if
session tokens are transmitted in the clear.
In this paper we propose the use of browser fingerprint-
ing for enhancing current state-of-the-art HTTP(S) session
management. Monitoring a wide set of features of the user’s
current browser makes session hijacking detectable at the
server and raises the bar for attackers considerably. This
paper furthermore identifies HTML5 and CSS features that
can be used for browser fingerprinting and to identify or
verify a browser without the need to rely on the UserAgent
string. We implemented our approach in a framework that
is highly configurable and can be added to existing Web
applications and server-side session management with ease.

Keywords-Session Hijacking, Browser Fingerprinting, Se-
curity

I. INTRODUCTION

Popular websites like Facebook or Yahoo, along with
many others, use HTTPS-secured communication only
for user authentication, while the rest of the session is
usually transmitted in the clear. This allows an attacker
to steal or copy the session cookies, identifiers or tokens,
and to take over the session of the victim. Unencrypted
Wi-Fi and nation-wide interceptors have used this as
an attack vector multiple times recently, proving that
session hijacking is indeed a problem for today’s Internet
security. To protect the session of a user, we implemented
a framework that ties the session to the current browser by
fingerprinting and monitoring the underlying browser, its
capabilities, and detecting browser changes at the server
side. Our framework, the Session Hijacking Prevention
Framework (SHPF), offers a set of multiple detection
mechanisms which can be used independently of each
other. SHPF protects especially against session hijacking
of local adversaries, as well as against cross-site scripting
(XSS). The underlying idea of our novel framework: If
the user’s browser suddenly changes from, e.g., Firefox
on Windows 7 64 bit to an Android 4-based Webkit
browser in a totally different IP range, we assume that
some form of mischief is happening.

Our framework uses a diverse set of inputs and allows
the website administrator to add SHPF with just a few
additional lines of code in existing applications. There is
no need to change the underlying Web application, and

we can use the initial authentication process which is
already part of many applications to build further security
measurements on top. As part of the authentication
process at the beginning of a session, the server asks the
browser for an exact set of features and then monitors
constantly whether the browser still behaves as expected
over the entire session. While an attacker can easily steal
unencrypted session information, e.g., on unencrypted
Wi-Fi, it is hard to identify the exact responses needed
to satisfy the server without access to the same exact
browser version. Furthermore, we use a shared secret that
is negotiated during the authentication, which is used to
sign requests with an HMAC and a timestamp, building
and improving on previous work in this direction. Recent
attacks against HTTPS in general and the certificate
authorities Diginotar and Comodo [8] in particular have
shown that even the widespread use of SSL and HTTPS
are not sufficient to protect against active adversaries
and session hijacking. Previous work in the area of
server-side session hijacking prevention relied, e.g.,
on a shared secret that is only known to the client’s
browser [1] and never transmitted in the clear. While this
is a feasible approach and can protect a session even for
unencrypted connections, our system extends this method
by employing browser fingerprinting for session security,
thus allowing us to incorporate and build upon existing
security mechanisms like HTTPS. Furthermore, it offers
protection against both passive and active adversaries.
While the OWASP AppSensor project is a framework
that offers similar features as SHPF for Web applications
(e.g., detecting anomalies within a session and terminate
it if necessary), it only uses a very limited set of checks
compared to SHPF, namely the IP and the UserAgent
string.

Our contributions in this paper are the following:
• We present a framework to enhance HTTP(S) session

management, based on browser fingerprinting.
• We propose new browser fingerprinting methods for

reliable browser identification based on CSS3 and
HTML5.

• We extend and improve upon existing work on using
a shared secret between client and server per session.

II. BACKGROUND

Many administrators regard introducing SSL by default
as too cost-intensive. Anecdotal evidence suggests that

naively enabling SSL without further configuration may
incur significant performance degradation up to an order
of magnitude. Gmail (with GMail) and Twitter use SSL
by default for everyone, while Facebook is currently
rolling it out (for North America only, so far). While
HTTPS can be found on a large number of popular
websites that require some form of authentication [5],
only a minority of these binds the sessions to a user’s
device or IP address to protect the user against session
hijacking [2]. Multiple tools have been released that
allow automated session hijacking: FaceNiff, DroidSheep,
Firesheep, cookiemonster and sslstrip, just to name a
few. They allow an attacker (with multiple methods) to
take over the victim’s valid session and compromising
the account in question. Most of them work by either
sniffing for unencrypted packets containing valid session
tokens, or forcing the client to send them in the clear.

III. BROWSER FINGERPRINTING

This section introduces our new browser fingerprinting
methods, namely CSS and HTML5 fingerprinting. Fur-
thermore, we present details on how we monitor HTTP
headers in SHPF, which allows website administrators
to configure advanced policies such as preventing an
HTTP session from roaming between a tightly secured
internal network and a public network beyond the control
of the administrators. While browser fingerprinting has
ambiguous meanings in the literature i.e., identifying the
web browser down to the browser family and version
number [3] vs. (re-)identifing a given user [9], we use
the former.

A. CSS Fingerprinting

The upcoming (not yet fully standardized) CSS3
modules vary in stability and status. While some of
them already have recommendation status, others are still
candidate recommendations or working drafts. Browser
vendors usually start implementing properties early, even
long before they become recommendations. We identify
three CSS-based methods of browser fingerprinting: CSS
properties, CSS selectors and CSS filters. Differences in
the layout engine allow us to identify a given browser
by the CSS properties it supports. When properties
are not yet on ”Recommendation“ or ”Candidate
Recommendation“ status, browsers prepend a vendor-
specific prefix indicating that the property is supported
for this browser type only. Once a property moves
to Recommendation status, prefixes are dropped by
browser vendors and only the property name remains. For
example, in Firefox 3.6 the property border-radius had a
Firefox prefix resulting in -moz-border-radius, while in
Chrome 4.0 and Safari 4.0 it was -webkit-border-radius.
Since Firefox 4 as well as Safari 5.0 and Chrome 5.0,
this feature is uniformly implemented as border-radius.
The website https://www.caniuse.com shows a very
good overview on how CSS properties are supported
in the different browsers and their layout engine. Apart

from CSS properties, browsers may differ in supported
CSS selectors as well. Selectors are a way of selecting
specific elements in an HTML tree. For example, CSS3
introduced new selectors for old properties, and they too
are not yet uniformly implemented and can be used for
browser fingerprinting. The third method of distinguishing
browsers by their behavior is based on CSS filters. CSS
filters are used to modify the rendering of e.g., a basic
DOM element, image, or video by exploiting bugs or
quirks in CSS handling for specific browsers, which again
is very suitable for browser fingerprinting. Centricle1

provides a good comparison of CSS filters across different
browsers.

As CSS is used for styling websites it is difficult to
compare rendered websites at the server side. Instead of
conducting image comparison (as used recently by Mow-
ery et al. [12] to fingerprint browsers based on WebGL-
rendering), we use in our implementation JavaScript to test
for CSS properties in style objects: in DOM, each element
can have a style child object that contains properties for
each possible CSS property and its value (if defined).
There are now two ways to test CSS support of a property
in the style object: the first way is to simply test whether
the browser supports a specific property by using the
in keyword on an arbitrary style object; the returning
Boolean value indicates whether the property is supported.
The second way to test whether a given CSS property is
supported is to look at the value of a property once it
has been set. We can set an arbitrary CSS property on an
element and query the JavaScript style object afterwards.
Interpreting the return values shows whether the CSS
property is supported by the browser: undefined (null) as
return value indicates that the property is not supported.
If a not-null value is returned this means the property is
supported and has been parsed successfully by the browser.
The value string as such, returned upon querying the style
object, also differs between browsers. It can be used as yet
another test for fingerprinting based on CSS properties.
For example, consider the following CSS3 background
definition: background:hsla(56, 100%, 50%, 0.3). While
Firefox returns none repeat scroll 0% 0% rgba(255, 238,
0, 0.3), Internet Explorer returns hsla(56, 100%, 50%,
0.3). The order of elements within the return string for
composite values may also deviate between browsers e.g.,
the box-shadow property with distance values as well as
color definitions.

B. HTML5 Fingerprinting

HTML5, like CSS3, is still under development, but
there are already working drafts which have been
implemented to a large extend by different browsers.
This new standard introduces some new tags, but also
a wide range of new attributes. Furthermore HTML5
specifies new APIs (application programming interfaces),
enabling the Web designer to use functionalities like
drag and drop within websites. Since browser vendors

1http://centricle.com/ref/css/filters/

https://www.caniuse.com
http://centricle.com/ref/css/filters/

have differing implementation states of the new HTML5
features, support for the various improvements can be
tested and used for fingerprinting purposes as well. For
identifying the new features and to what extent they are
supported by modern browsers, we used the methodology
described in [14]. The W3C furthermore has a working
draft on differences between HTML5 and HTML4 that
was used as input [15].

In total we identified a set of 242 new tags, attributes
and features in HTML5 that were suitable for browser
identification. While 30 of these are attributed to new
HTML tags that are introduced with HTML52, the rest
of the new features consist of new attributes for existing
tags as well as new features. We then created a website
using the Modernizr library to test for each of these tags
and attributes and whether they are supported by a given
browser. We collected the output from close to 60 different
browser versions on different operating systems. One of
our findings from the fingerprint collection was that the
operating system apparently has no influence on HTML5
support. We were unable to find any differences between
operating systems while using the same browser version,
even with different architectures.

C. Basic HTTP Header Monitoring

For each HTTP request, a number of HTTP headers
is included and transmitted to the Web server. RFC 2616
defines the HTTP protocol [4] and specifies several HTTP
headers that can or should be sent as part of each HTTP re-
quest. The number of headers, the contents and especially
the order of the header fields, however, are chosen by the
browser and are sufficient for identifying a browser. Using
this method for browser identification has already been
discussed in previous work [3], [16] and is already used
to some extend by major websites [2], we will thus only
briefly cover the parts which are of particular interest for
SHPF. In our implementation we use the following header
fields for HTTP session monitoring: UserAgent string,
Accept, Accept-Language, Accept-Encoding, as well as the
client’s IP-Address.

The UserAgent contains information about the browser,
often the exact browser version and the underlying
operating system. It is, however, not a security feature,
and can be changed arbitrarily by the user [13]. SHPF
is not dependending on the UserAgent, and works
with any string value provided by the browser. If the
UserAgent changes during a session, however, this is a
strong indication for session hijacking especially across
different Web browsers. Depending on the configuration
of SHPF and the particular security policy in place, it
might however be acceptable to allow changes in the
browser version e.g., with background updates of the
browser while using a persistent session. Apart from the
HTTP header values themselves, there is also a significant
difference in how the browsers order the HTTP header
fields. While Internet Explorer 9 for example sends the

2http://www.w3schools.com/html5/html5 reference.asp

UserAgent before the Proxy-Connection and Host header
fields, Chrome sends them in the exact opposite order.
The content of the header fields is not important in this
case.

If any values or a subset of these values change
during a session, we assume that the session has been
hijacked (in the simplest case). For example, if during
a session multiple UserAgents from different IPs use
the same session cookie, this implies in our framework
that the session has been hijacked (session identifiers
ought to be unique). The session would be terminated
immediately and the user would need to reauthenticate.
While cloning the HTTP headers is rather easy, binding a
session to a given IP address considerably raises the bar
for adversaries, even if they can obtain a valid session
cookie and the full HTTP header.

IV. SHPF FRAMEWORK

This section describes the implementation of our frame-
work and its architecture, the Session Hijacking Prevention
Framework (SHPF). The source code is released under
an open source license and can be found on github3.
Despite the new fingerprinting methods presented in the
previous section, we also implemented and improved
SessionLock [1] for environments that do not use HTTPS
by default for all connections.

A. General Architecture

SHPF is a server-side framework which is written
in PHP5 and consists of multiple classes that can be
loaded independently. Its general architecture and basic
functionality is shown in Figure 1. We designed it
to be easily configurable (depending on the context
and the security needs of the website), portable and
able to handle a possibly large number of concurrent
sessions. Our implementation can be easily extended with
existing and future fingerprinting methods, e.g., textfont
rendering [12] or JavaScript engine fingerprinting [11],
[13].

The main parts of the framework are the so-called
features. A feature is a combination of different checks
for detecting and mitigating session hijacking. In our
prototype we implemented the following features: HTTP
header monitoring, CSS fingerprinting and SecureSession
(which implements and extends the SessionLock protocol
by Ben Adida). Features are also the means to extend
the framework, and we provide base classes for fast
feature development. A feature consists of one or more
checkers, which are used to run certain tests. There are
two different types (or classes) of checkers: Synchronous
checkers can be used if the tests included in the checker
can be run solely from existing data and are passive in
nature, such as HTTP requests or other website-specific
data that is already available. Asynchronous checkers are

3https://github.com/mmulazzani/SHPF

http://www.w3schools.com/html5/html5_reference.asp
https://github.com/mmulazzani/SHPF

2. Sync. SHPF Checkers:

Basic HTTP Header Monitoring
HTTP Header Ordering, IP,
UserAgent, …

3. Async. SHPF Checkers:

CSS Fingerprinting
Supported CSS Features

Future Fingerprinting
HTML 5 Fingerprinting,
Javascript, WebGL, ...

1. Regular HTTP / HTTPS Session

5. SHPF SecureSession Feature

4. Async SHPF checks

Figure 1. SHPF Architecture

used if the tests have to actively request some additional
data from the client and the framework has to process the
response. Client responses are sent via asynchronous calls
(AJAX) as part of SHPF, thus not blocking the session or
requiring to rewrite any existing code.

The distinction between features and checkers gives the
website control over which checks to run. Features can
be disabled or enabled according to the website’s security
needs, and can be assigned to different security levels.
Different security levels within a webpage are useful, for
example, in privacy-heterogeneous sessions - basic checks
are performed constantly, while additional checks can be
run only when necessary, e.g., when changing sensitive
information in a user’s profile (much like Amazon does for
its custom session management). In order to communicate
with a Web application, callbacks can be defined both
in PHP and JavaScript. These callbacks are called if a
checker fails and thus allow the application to react in an
appropriate way, e.g., terminate the session and notify the
user. Consider a for example a website e.g., a web store,
which uses three different security levels for every session:

• Level 1 is for customers who are logged in and
browsing the web store.

• Level 2 is for customers who are in a sensitive part
of their session, e.g., ordering something or changing
their profile.

• Level 3 is for administrators who are logged into the
administrative interface.

Level 1 is a very basic security level. In this example
it prevents session hijacking by monitoring the UserAgent
string of the user for modifications. As a sole security
measure it only protects the user against attacks that can
be considered a nuisance, and can possibly be bypassed
by an attacker (by cloning the UserAgent string). The Web
application is designed in such a way that an attacker
cannot actively do any harm to the user, for example
browsing only specific products to manipulate the web
store’s recommendation fields. If the customer decides
to buy something, level 2 is entered which uses two
additional security measures: the current session is locked

to the user’s IP address and the order of the HTTP headers
is monitored to detect if a different browser uses the same
UserAgent string. Once the transaction is complete, the
customer returns to level 1. For an administrator, even
more checkers are enabled at the start of the session:
SecureSession protects the session cryptographically with
a shared secret between the particular browsers that started
the sessions, and the CSS properties supported by the
browser are monitored. Please note that this configuration
is given merely by way of an example and must be
matched to existing security policies when implemented.
Furthermore, note that HTTPS is not mentioned in the
example - even though it is strongly advised to use
HTTPS during an entire session (besides SHPF), it is not
a requirement. SHPF can prevent session hijacking even
if session tokens are transmitted in the clear.

B. Basic HTTP Header Monitoring

The HTTP header monitoring feature does the follow-
ing:

1) On the first request, the framework stores the con-
tents and the order of the HTTP headers as described
above.

2) For each subsequent request, the feature compares
the headers sent by the client with the stored
ones and checks whether their content and/or order
match.

Depending on the particular use case, different configu-
rations are possible, e.g., binding a session to a given IP, a
certain IP range or a UserAgent string. Another example
would be to allow IP address roaming while enforcing
that the operating system as claimed by the UserAgent
string as well as the browser has to stay the same, allowing
the browser version to change, e.g., through background
updates in Chrome or Firefox. HTTP header monitoring is
implemented as a synchronous checker, as the data needed
for processing is sent with every request.

C. CSS Fingerprinting

Using the CSS fingerprinting methods explained above,
a SHPF feature has been implemented that does the
following:

1) On the first request of the client: Run the complete
fingerprinting suite on the client (using 23 CSS
properties at the time of writing) and save the values.

2) For each subsequent request of the client: choose a
subset of CSS properties and test them on the client.

3) Receive the data and check if it was requested by
the framework (anti-replay protection).

4) Compare the values with the saved values.
As this feature needs data from the client, this checker

has been implemented as an asynchronous checker. The
client is challenged to answer a subset of the previously
gathered properties either for each HTTP request or
within a configurable interval between CSS checks (say,
every 10 or 20 requests). By default, the framework
tests three CSS properties and compares the results with
the previously collected fingerprint of that browser. The
data received asynchronously must match the requested
properties and must arrive within a configurable time
span. If the received data do not match the expected
data, arrive too late or are not requested by the feature,
the session is terminated immediately. If no response
is received within a configurable time span, the session
is terminated as well. SHPF may be also configured to
terminate the session if no JavaScript is enabled, thus
making CSS fingerprinting mandatory by policy.

In order to reliably identify a given browser, we selected
a mix of CSS3 properties that are not uniformly supported
by current browsers. In total, 23 properties were identified
as suitable for fingerprinting which are shown in Table I.
For our implementation of CSS fingerprinting in SHPF we
chose to use CSS properties only - CSS selectors were
not used because CSS properties are sufficient to reliably
identify a given browser. Nonetheless, the framework
could be extended by supporting CSS selector and CSS
filter fingerprinting in the future.

D. SecureSession

The SecureSession feature implements the SessionLock
protocol by Ben Adida [1], but extends and modifies it in
certain aspects:

• SessionLock utilizes HTTPS to transfer the session
secret to the client. In our SecureSession feature we
use a Diffie-Hellman Key Exchange as discussed by
Ben Adida in his paper.

• We use the new WebStorage4 features implemented
by modern browsers by using JavaScript and the
localStorage object to store the session secret.

• We improved patching of URLs in JavaScript com-
pared to the original protocol.

E. Further Fingerprinting Methods

Our framework is especially designed to allow new
and possibly more sophisticated fingerprinting methods to
be added at a later point in time by implementing them
as additional checkers. The presented results on HTML5

4http://www.w3.org/TR/webstorage/

fingerprinting above, e.g., have not yet been implemented
at the time of writing. We are planning to implement
HTML5 fingerprinting as an asynchronous checker in
the near future. Other fingerprinting methods e.g., EFF’s
Panopticlick [3], can be added at ease. See Section VI-A
for related work and other fingerprinting methods which
could be added to SHPF.

V. EVALUATION

A. Threat Model

An attacker in our threat model can be local or remote
from the victim’s point of view, as well as either active or
passive. Figure 2 shows an overview of the different points
of attack that were considered while designing SHPF. They
are based on the OWASP Top 105, which has multiple
categories that either directly allow session hijacking, or
facilitate it. The most notable categories are ”A2 Broken
User Authentication and Session Management“ and ”A3
Cross-Site Scripting“. We particularly considered threats
that are actively exploited in the wild, with tools available
for free.

The following points of attack allow an attacker to
hijack a session:

1) Different attacks where the attacker has access to
the victim’s network connection.

2) The target website is vulnerable to code injection
attacks (XSS), pushing malicious code to the client.

3) Local code execution within the victims browser’s
sandbox, e.g., by tricking the victim into executing
Javascript (besides XSS).

4) Attacker has access to 3rd party server with access
to the session token, e.g., a proxy, Tor exit node
sniffing [10], [6] or via HTTP referrer string.

WebsiteVictim

Attacker 3rd Party Server

 2. XSS

1. Local Network
Attacks (Wifi, …)

3. Attacks on
the Client

4. Accidental
Token Leakage

Figure 2. Attack Points for Session Hijacking

B. Discussion

To counter the attacks listed above, SHPF relies on a
combination of its features: the shared secret between the
server and client using the SecureSession feature, and

5https://owasp.org/index.php/Top 10

http://www.w3.org/TR/webstorage/
https://owasp.org/index.php/Top_10

CSS Status - Recommendation CSS Status - Working Draft
Feature Value Feature Value
display inline-block transform rotate(30deg)

min-width 35px font-size 2rem
position fixed text-shadow 4px 4px 14px #969696
display table-row background linear-gradient (left, red, blue 30%, green)
opacity 0.5 transition background-color 2s linear 0.5s

background hsla(56, 100%, 50%, 0.3) animation name 4s linear 1.5s infinite alternate none
resize both

CSS Status - Cand. Recommendation box-orient horizontal
Feature Value transform-style preserve-3d

box-sizing border-box font-feature-setting dlig=1,ss01=1
border-radius 9px width calc(25% -1em)
box-shadow inset 4px 4px 16px 10px #000 hyphens auto

column-count 4 object-fit contain

Table I
23 CSS PROPERTIES AND VALUES IDENTIFIED FOR CSS FINGERPRINTING

session hijacking detection using browser fingerprinting.
An attacker would thus have to find out the secret, share
the same IP and copy the behavior of the victim’s browser
- either by running the same browser version on the
same operating system or by collecting the behavior of
the browser over time. SHPF does not intend to replace
traditional security features for web sessions. While our
approach cannot prevent session hijacking entirely it
makes it harder for the attacker. For sensitive websites
with a high need for security, additional measures like
2-factor authentication or client-side certificates should
be employed.

The basic monitoring of HTTP information gives a
baseline of protection. Binding a session to, e.g., an
IP address makes it considerably harder for a remote
attacker to attack, and a local attacker needs to be on
the same local area network if the victim is behind NAT.
Changes in the UserAgent or the HTTP header ordering
are easily detectable, especially if careless attackers use
sloppy methods for cloning header information, or only
use some parts of the header for their user impersonation:
Firesheep and FaceNiff, for example, both parse the
header for session tokens instead of cloning the entire
header. A recent manual analysis of the Alexa Top100
pages showed that only 8% of these very popular websites
use basic monitoring in any form - notably eBay, Amazon
and Apple [2]. Even though asynchronous challenges for
fingerprinting on the attacker’s machine could also simply
be forwarded to the victim for the correct responses, the
additional delay is detectable by the server.

SHPF has the following impact on the attack vectors:
1) Snooping or redirecting local network traffic can be
detected at the server with either browser fingerprinting or
using the shared secret, which is never transmitted in clear
from SecureSession - both methods are equally suitable.
2) Cross-site scripting prevention relies on browser finger-
printing only, as the attacker could obtain session tokens
by executing Javascript code in the victim’s browser. The
shared secret is not protected against such attacks. 3) Local
attacks are also detected by browser fingerprinting only -

the session secret is not safe, thus the attacker has to either
run the same browser, or answer the asynchronous checks
from the framework correctly. 4) Accidental token leakage
is again prevented by both aspects, so even if the session
is not encrypted by HTTPS the content is encrypted by the
SecureSession feature and fingerprinting is used to detect
changes in the used browser.

C. Limitations

Even though SHPF makes session hijacking harder, it
has limitations: the HTTP headers and their ordering, as
well as the UserAgent, are by no means security measures
and can be set arbitrarily. However, if enough information
specific to a browser is used in combination with ever
shorter update intervals for browsers, we believe that
fingerprinting is suitable for preventing session hijacking.
Secondly, SHPF does not protect against CSRF: An at-
tacker who is able to execute code outside of the browser’s
sandbox, or has access to the hardware, can bypass our
framework. Thus session hijacking is made harder in the
arms race with the adversary, but not entirely prevented.
Another limitation is the vulnerability to man-in-the-
middle attacks: Diffie-Hellman in Javascript for shared
secret negotiation is vulnerable to MITM, and either a
secure bootstrapping process for session establishment or
offline multifactor authentication is needed to protect the
session against such adversaries.

VI. RESULTS

In general, the performance impact of running SHPF
on the server is negligible, as most of the processing
is implemented as simple database lookups. Depending
on the complexity of the underlying webapplication, it
is expected to be just a few percent and below. A
thorough analysis of the additional overhead was not
conducted due to the lack of a standardized webapplication
or performance benchmark for such a test. Only a few
kilobytes of RAM are needed per session and client for
all features combined, while the overhead on the network
is around 100 kilobytes (mostly for the libraries used by
our framework - they need to be transferred only once due
to browser caching). A mere 15 lines of code are needed
to include SHPF in existing websites, while the features

each consist of a few hundred lines of code on average,
with SecureSession being by far the biggest feature (about
4000 lines). Existing Web applications implement far
more complicated logic flows and information processing
capabilities then SHPF.

A. Related Work

In the area of browser fingerprinting, different
approaches have been used to identify a given browser.
Panopticlick [3] relies on the feature combination of
UserAgent string, screen resolution, installed plugins and
more to generate a unique fingerprint that allows the
tracking of a given browser even if cookies are disabled.
Other recent work in the area of browser fingerprinting
identifies a client’s browser and its version as well as
the underlying operating system by fingerprinting the
JavaScript engine [11], [13]. Another recent method uses
differences in website rendering [12]. Like SHPF, these
methods allow the detection of a modified or spoofed
UserAgent string, as it is not possible to change the
behavior of core browser components like the rendering
or the JavaScript engine within a browser. With regards
to privacy, cookies and browser fingerprinting can be
employed to track a user and their online activity. A
survey on tracking methods in general can be found
in [9]. Other work has recently shown that the UserAgent
is often sufficient for tracking a user across multiple
websites or sessions [16]. Session hijacking has been
shown to allow access to sensitive information on
social networking sites [7]. Finally, session hijacking is
often conducted using cross-site scripting (XSS) attacks
that are used to send the session information to an
attacker. While this can be employed to protect a user
from entering the password at an insecure terminal [2],
it is often used maliciously, e.g., to impersonate the victim.

VII. CONCLUSION

In this paper, we presented our framework SHPF which
is able to raise the bar for session hijacking. It detects and
prevents attacks and hijacking attemps of various kinds,
such as XSS or passive sniffing on the same network (Wi-
Fi). We furthermore proposed two new browser finger-
printing methods based on HTML5 and CSS, which can
identify a given browser. SHPF uses browser fingerprinting
to detect session hijacking. SHPF can be configured to run
with different security levels, allowing additional security
checks for sensitive sessions or session parts. Future
and upcoming fingerprinting methods can be incorporated
easily.

ACKNOWLEDGEMENTS

Thanks to Peter Kieseberg, Manuel Leithner & Sebas-
tian Neuner and for their feedback and helpful comments.
This research was funded by the Austrian Research Pro-
motion Agency under COMET K1.

REFERENCES

[1] B. Adida. Sessionlock: Securing web sessions against
eavesdropping. In Proceeding of the 17th International
Conference on World Wide Web (WWW), pages 517–524.
ACM, 2008.

[2] E. Bursztein, C. Soman, D. Boneh, and J.C. Mitchell.
Sessionjuggler: secure web login from an untrusted termi-
nal using session hijacking. In Proceedings of the 21st
international conference on World Wide Web, pages 321–
330. ACM, 2012.

[3] P. Eckersley. How unique is your web browser? In
Proceedings of Privacy Enhancing Technologies (PETS),
pages 1–18. Springer, 2010.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Rfc 2616: Hypertext trans-
fer protocol–http/1.1, 1999. Online at http://www.rfc.net/
rfc2616.html, 1999.

[5] R. Holz, L. Braun, N. Kammenhuber, and G. Carle. The
SSL landscape: a thorough analysis of the x. 509 PKI using
active and passive measurements. In Proceedings of the
2011 ACM SIGCOMM conference on Internet measurement
conference, pages 427–444. ACM, 2011.

[6] M. Huber, M. Mulazzani, and E. Weippl. Tor HTTP
Usage and Information Leakage. In Communications and
Multimedia Security, pages 245–255. Springer, 2010.

[7] M. Huber, M. Mulazzani, and E. Weippl. Who On Earth Is
Mr. Cypher? Automated Friend Injection Attacks on Social
Networking Sites. In Proceedings of the IFIP International
Information Security Conference 2010: Security and Pri-
vacy (SEC), 2010.

[8] N. Leavitt. Internet security under attack: The undermining
of digital certificates. Computer, 44(12):17–20, 2011.

[9] J.R. Mayer and J.C. Mitchell. Third-party web tracking:
Policy and technology. In Security and Privacy (SP), 2012
IEEE Symposium on, pages 413–427. IEEE, 2012.

[10] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and
D. Sicker. Shining light in dark places: Understanding the
tor network. In Privacy Enhancing Technologies, pages
63–76. Springer, 2008.

[11] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham.
Fingerprinting information in javascript implementations.
In Proceedings of Web 2.0 Security & Privacy Workshop
(W2SP), 2011.

[12] K. Mowery and H. Shacham. Pixel perfect: Fingerprinting
canvas in html5. In Proceedings of Web 2.0 Security &
Privacy Workshop (W2SP), 2012.

[13] M. Mulazzani, P. Reschl, M. Huber, M. Leithner, S. Schrit-
twieser, and E. Weippl. Fast and reliable browser identi-
fication with javascript engine fingerprinting. In Web 2.0
Workshop on Security and Privacy (W2SP), 5 2013.

[14] M. Pilgrim. Dive into HTML5. O’Reilly Media, 2010.

[15] A. van Kesteren. HTML 5 differences from HTML 4.
Working Draft, W3C, 2013.

[16] T.F. Yen, Y. Xie, F. Yu, R.P. Yu, and M. Abadi. Host
fingerprinting and tracking on the web: Privacy and security
implications. In Proceedings of the 19th Annual Network
& Distributed System Security Symposium. NDSS, 2012.

http://www.rfc.net/rfc2616.html
http://www.rfc.net/rfc2616.html

	Introduction
	Background
	Browser Fingerprinting
	CSS Fingerprinting
	HTML5 Fingerprinting
	Basic HTTP Header Monitoring

	SHPF Framework
	General Architecture
	Basic HTTP Header Monitoring
	CSS Fingerprinting
	SecureSession
	Further Fingerprinting Methods

	Evaluation
	Threat Model
	Discussion
	Limitations

	Results
	Related Work

	Conclusion
	References

