
AppInspect: Large-scale Evaluation of
Social Networking Apps

Markus Huber∗† Martin Mulazzani∗

Sebastian Schrittwieser∗ Edgar Weippl∗

SBA Research ∗
Favoritenstrasse 16, 1040 Wien, Austria

{mhuber, mmulazzani, sschrittwieser, eweippl}@sba-research.org

Vienna PhD school of informatics†

ABSTRACT
Third-party apps for social networking sites have emerged as
a popular feature for online social networks, and are used by
millions of users every day. In exchange for additional fea-
tures, users grant third parties access to their personal data.
However, these third parties do not necessarily protect the
data to the same extent as social network providers. To au-
tomatically analyze the unique privacy and security issues of
social networking applications on a large scale, we propose
a novel framework, called AppInspect. Our framework enu-
merates available social networking apps and collects metrics
such as the personal information transferred to third party
developers. AppInspect furthermore identifies web trackers,
as well as information leaks, and provides insights into the
hosting infrastructures of apps. We implemented a proto-
type of our novel framework to evaluate Facebook’s appli-
cation ecosystem. Our evaluation shows that AppInspect
is able to detect malpractices of social networking apps in
an automated fashion. During our study we collaborated
with Facebook to mitigate shortcomings of popular apps
that affected the security and privacy of millions of social
networking users.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Applications; D.4.6 [Operating Systems]: Se-
curity and Protection—Access controls; Verification

General Terms
Measurement, Security, Verification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
COSN’13, October 7–8, 2013, Boston, Massachusetts, USA.
Copyright 2013 ACM 978-1-4503-2084-9/13/10 ...$15.00.
http://dx.doi.org/10.1145/2512938.2512942.

Keywords
Online Social Networks; Facebook Apps; Information Leaks

1. INTRODUCTION
Third-party applications, or colloquially “apps”, are used

by hundreds of millions of social networking users every day.
Popular apps include games, horoscopes, and quizzes. To
provide additional features, app developers transfer personal
information from their users to their application servers.
Online social networks typically embed applications as framed
websites in their own portal and thus act as proxies between
users and third-party applications. The actual application
code runs on third-party servers beyond the supervision of
social network providers.

The modus operandi of social networking apps gives rise
to unique privacy and security challenges. Applications may
maliciously harvest a wealth of personal information. One of
the key challenges is, therefore, to detect applications that
process data in a way that may violate the security or pri-
vacy expectation of users, and to identify apps that request
more permissions than actually needed for their operation.
Furthermore, sensitive user data may be stored on badly
maintained third-party servers, making them low-hanging
fruits for attackers. Insights into applications’ underlying
hosting infrastructure would help to get a better understand-
ing of these security risks. Application providers themselves
rely on third parties for in-app advertising and analytics.
Therefore, social networking apps may leak sensitive infor-
mation to third parties, both deliberately or by accident.
In the worst case, third parties may use leaked personal in-
formation to track app users across multiple websites with
knowledge of their real identity. As a result, detecting in-
formation leakage is another important challenge. Previous
research focused on a single challenge, namely analyzing per-
sonal information requested by social networking apps [43,
8]. As a result of the deep integration of apps into social net-
working platforms, users often do not understand that ap-
plication developers receive and accumulate their personal
information [28]. We are left with a dilemma of social net-
working users’ misperception regarding app security and pri-
vacy, but also with little insight into third-party application
ecosystems.

In this paper we outline AppInspect, a novel framework
to systematically analyze the unique privacy and security
challenges of social networking applications. Our proposed
framework analyzes both information flows from social net-
working providers to third-party applications and informa-
tion flows from social networking applications to third par-
ties. An initial challenge in studies of online social networks
lies in obtaining a meaningful sample of applications. Our
AppInspect framework entails a number of application enu-
meration strategies to overcome this first obstacle. In the
next step, our framework automatically fetches important
attributes of enumerated applications, including their pop-
ularity and the set of requested permissions. Finally, our
framework collects the network traffic of social networking
apps to subsequently spot web trackers, poorly maintained
application hosts, and leaking of sensitive information to
third parties. The motivation of our research is to protect
social networking users by automatically detecting security
and privacy issues with social networking apps, as well as
policy violations. The findings of our AppInspect framework
assist both social networking providers and application de-
velopers in protecting their users. We used our AppInspect
prototype to carry out a large-scale evaluation of Facebook’s
application ecosystem, which ultimately helped to detect
and report a number of privacy and security shortcomings.
The main contributions in this paper are the following:

• We present a novel framework for automated privacy
and security analysis of social networking apps, called
AppInspect.

• We evaluate the feasibility of our AppInspect frame-
work with Facebook’s application ecosystem.

• We found a number of information leaks and malprac-
tices in popular applications and helped to fix these
issues.

• We make our datasets of Facebook applications avail-
able to the research community and periodically pub-
lish updated datasets.

The rest of this paper is structured as follows: Section 2
provides a brief background on third-party applications in
online social networks. Section 3 outlines the design and
functionality of our proposed framework. In Section 4, we
describe the evaluation of our framework on Facebook and
our acquired application sample. Section 5 presents our find-
ings on Facebook’s most popular applications. We then dis-
cuss the implications of our findings in Section 6, explore
related work in Section 7, and finally present our conclu-
sions in Section 8.

2. SOCIAL NETWORKING APPS
Third-party applications are a popular feature of today’s

online social networks (OSNs). These “apps”, as they are
colloquially referred to, enrich user data to provide addi-
tional user experience and functionality. An app might, for
example, query a user’s birthday to create a personalized
horoscope in exchange. Social networking data is hereby
provided to third parties through developer application pro-
gramming interfaces (APIs). At the time of writing, there
are two major classes of apps. The first class consists of
games, which typically incorporate aspects of social network-
ing into their gameplay. The second class contains general

add-ons to social network platforms, ranging from simple
horoscope applications to sophisticated job hunting appli-
cations. Facebook pioneered third-party applications by in-
troducing the “Facebook Platform” in May 2007 [15]. Face-
book’s competitors responded with the launch of an open
standard for third-party access to social networking data
called “OpenSocial” in November 2007 [20]. At the time of
writing, Facebook’s Connect platform is the most popular
and mature framework for social networking apps, which is
why we use Facebook as an example of third-party plat-
forms. Ko et al. [29] provides an overview of existing social
networking APIs.

2.1 Facebook Platform
The Facebook Platform enables third parties to offer cus-

tom applications that extend Facebook’s core functionality
and integrate deeply into their website. Apps on Facebook
are loaded inside Facebook through a “Canvas Page”, which
represents an HTML iframe. Facebook acts as a proxy for
displaying the output of apps to its users through iframes,
while the actual apps are hosted and executed on third-party
servers. Facebook has no control over app servers but legally
binds third-party developers to comply with their Platform
policies [14]. Before users decide to install a specific app,
they need to authorize it. Facebook uses OAuth 2.0 [22]
for authentication and authorization of third-party appli-
cations. Once users authorize an application, it is granted
access to basic information by default. Basic information
includes ID, name, picture, gender, locale, and friend con-
nections of a given user. Applications may, however, request
additional permissions. At the time of writing, there are
four additional permission classes available on the Facebook
Platform [13], which applications may request in any com-
bination. In total, there are 67 possible application permis-
sions that app developers may request for their application.
Permissions within the extended permissions class grant ap-
plications access to sensitive information such as exchanged
private messages, and allows applications to post content
on behalf of its users. Another important permission class
is the user and friend permissions class. Using permissions
in this class, developers may request to gather information
on a user’s religion, relationship status, birthday, personal
email addresses, and virtually any published content. Devel-
opers may also request personal profile information from a
user’s friends, with the exception of private email addresses.
Facebook’s current default account settings allow applica-
tions to access personal information of all of a user’s friends.
This implies that, even if you have not installed a single
application, your data may be transferred to third parties
through your friends’ applications. Even though users can
control which information is provided to their friend’s appli-
cations, users are often unaware that they share their infor-
mation with apps per default. Over the course of the last five
years, Facebook has also emerged as an identity provider for
third-party websites. In addition to traditional canvas apps,
websites leverage Facebook as an identity provider and to
enhance their social experiences through JavaScript plug-
ins. Finally, Facebook offers third-party access to mobile
platforms through dedicated Android and iOS software de-
velopment kits.

Before users decide to add an application, an authoriza-
tion dialog with requested permissions is displayed. Hull et
al. [26] claim that Facebook’s privacy issues are based pri-

(a) Unified Auth Dialog, April 2010

(b) Enhanced Auth Dialog, January
2012 (c) App Center Auth Dialog, May 2012

Figure 1: Adjustments to Facebook’s application authorization dialog over time

marily on design issues, which could be improved by mak-
ing the flows of information more transparent to users. The
example of Facebook’s adjustments to their app authoriza-
tion dialog in Figure 1, suggests that Facebook might cur-
rently invest little in making their third-party application
system more transparent. In response to complaints from
the privacy commissioner of Canada, Facebook introduced
a unified permissions dialog in April 2010, of which Figure
1(a) provides an example. The unified dialog has been dep-
recated and only a small number of applications still use
this dialog. In January 2012 Facebook launched a revised
permissions dialog called Enhanced Auth Dialog (see Figure
1(b)), which replaced the unified permissions dialog. In May
2012, a third permission dialog for all applications listed in
Facebook’s App Center was introduced. Figure 1(c) shows
an instance of this dialog. The standard authentication di-
alog uses pictograms and verbose descriptions for requested
permissions and users may choose between Allow and Leave
App. Furthermore, a directed arrow symbolizes that the
requested information is transferred to a third party. Re-
quested permissions faded from the spotlight with the en-
hanced authentication dialog and permissions are now pre-
sented in a bulleted list with little additional information.
Facebook also changed the label of the authentication but-
ton, which reads Play Game instead of Allow. Finally, with
the App Center authentication dialog, the requested permis-
sions are hardly noticeable and a single prominent button
encourages users to play the game.

2.2 Application directories and reviews
An important privacy and security challenge with social

networking apps is the balance between requested data and
app functionality. Horoscope apps may for example harvest
a user’s personal messages and photos instead of requesting
only the date of birth. The Facebook Platform enables third-
party developers to make their apps available to other users
without requiring prior approval. Between May 2008 and
December 2008, Facebook operated a verified apps program,
through which it designated certain applications as “verified

apps”. A verified apps badge was promised to applications
that are secure and demonstrated commitment to compli-
ance with the Facebook platform policies. An FTC report,
however, found out that Facebook took no extra steps to ver-
ify the security of third-party applications and labeled the
program as deceptive [19]. Until July 2011, Facebook offered
a central application directory, where developers could sub-
mit their applications once they considered their software
mature. Later, Facebook removed its app directory and ap-
plications are now automatically indexed once they reach 10
monthly active users (MAU) [12]. In May 2012 Facebook in-
troduced the App Center1, which showcases what Facebook
describes as high-quality applications. At the time of writ-
ing, the App Center contains a few thousand applications.
The small number of App center applications is in stark
contrast to the overall number of applications. According
to Facebook [38, p. 87], as of March 2012, more than nine
million apps and websites were connecting to their Platform
services.

3. APPINSPECT
The vast amount of available third-party social networking

applications poses a challenge for large-scale security and
privacy studies. In order to overcome the näıve solution
of manually analyzing security and privacy issues of third-
party applications, we propose a novel analysis framework,
called AppInspect. In this section we outline the design and
functionality of our framework.

Our proposed AppInspect framework enables automated
security and privacy analysis of a target social networking
app ecosystem. Figure 2 depicts the four generic process-
ing steps to automatically analyze a given social network-
ing provider with AppInspect. (1) First, the search module
enumerates available third-party applications for a given so-
cial networking provider. (2) In a second step, the classifier
module collects additional information for all enumerated
apps. (3) Third, the analysis module adds the applications

1FB App Center http://www.facebook.com/appcenter

http://www.facebook.com/appcenter

Search
Module

Classifier
Module

Analysis
Module

Online Social Network (OSN)Start Analysis

App list App samples

Target
OSN

(1) Search Apps

App
Directory

Fetch
directory

Search
exhaustively

(3) Analyse network
traffic (4) Fingerprint

provider(2) Collect app details

Third-Party Applications

Figure 2: AppInspect, a framework for automated security and privacy analysis of social network ecosystems

to experimental accounts and collects the resulting network
traffic for further analysis. (4) Finally, the analysis mod-
ule fingerprints the hosting infrastructure of all applications.
AppInspect uses a modular software design and its func-
tionality is separated into three main modules. Our design
enables a straightforward adaption of features for different
security and privacy analyses. The three main modules and
their submodules are described in the following.

3.1 Search module
The initial challenge with social networking providers con-

sists in collecting a preferably complete list of third-party ap-
plications for further analysis in case a central app directory
is missing. In the best case, the social networking provider
offers a complete app directory, which contains all third-
party applications. In the non-trivial case, no complete ap-
plication directories exist and third-party applications have
to be enumerated using exhaustive search strategies.

Exhaustive search. In case no central application direc-
tory exists, exhaustive search strategies are required. The
most straightforward solution is the enumeration of unique
application identifiers. This näıve approach works with so-
cial network providers with a small range of numerical ap-
plication identifiers. In the case of LinkedIn, for example,
all available applications are easy to enumerate by testing a
small range of application identifiers. With Facebook, the
exhaustive search strategy becomes a non-trivial problem
because their application identifiers are not easily enumer-
able. Facebook assigns a unique numerical identifier to every
object it stores. Objects include third-party applications
but also user profiles, pictures, posts, etc. At the time of
writing, Facebook’s unique object identifiers are numerical
values of length 14, resulting in up to 1014 possible combina-
tions. This means that it is not feasible to probe the entire
identifier range for third-party applications due to the result-
ing costs for crawling and the fact that only a subset of these
IDs are for apps. However, Facebook indexes all third-party
applications that have reached more than 10 monthly active
users in their search feature. Hence, an exhaustive search
for indexed applications opens a way to enumerate applica-
tions on Facebook. Instead of integer ranges, the exhaustive
search probes the social network provider for keywords or
character n-grams. For example, all trigrams for the En-
glish alphabet would result in 263 = 17,576 search terms.

Castelluccia et al. [7] used this approach for a similar prob-
lem, namely the reconstruction of a users’ search history.
Similar to their work, our module can either use all possible
character n-grams or limit the number of search terms by
using Castelluccia et al.’s smart tree approach. In addition
to character n-grams, lists with common words provide yet
another keyword source.

Directory fetch. Some social networks offer a complete
application directory. For example, Google+’s game direc-
tory2 consists of a single webpage that contains less than 50
applications in total. In this particular case, the AppInspect
framework provides a dedicated submodule to gather the list
of all available third-party applications from the social net-
work’s application directory.

3.2 Classifier module
The classifier module collects additional information on

applications enumerated with AppInspect’s search module.
Information is gathered passively from the social network
provider without actually running or adding applications to
profiles.

Application properties. A number of application prop-
erties are available on third-party application description
pages. Important properties include the application type,
popularity, and rating. This submodule implements func-
tionality to automatically gather a set of predefined prop-
erties. The submodule opens the generic application page
for every application identifier and, in addition to fetching
available information, also observes the URL redirection be-
havior. Facebook, for example, redirects users to different
targets depending on the application type. The following
example redirects the user to http://yahoo.com, and the
submodule therefore classifies the application as an exter-
nal website.

Redirection to external website

GET /apps/application.php?id =194699337231859
Host: www.facebook.com
=⇒ Redirects to http :// yahoo.com

The second example of a Facebook application redirects the
user to an authentication dialog that is classified as a stan-
dard application that requests additional information.

2https://plus.google.com/games/directory

https://plus.google.com/games/directory

Redirection to authentication dialog

GET /apps/application.php?id =102452128776
Host: www.facebook.com
=⇒ Redirects to Facebook authentication dialog

Permissions. An important classification property of
third-party applications is the set of requested permissions.
This submodule collects the set of requested permissions us-
ing two different techniques: permissions are collected from
rendered permission dialogs and based on parameters in per-
mission dialog request URIs.

3.3 Analysis module
The analysis module analyses the actual application con-

tent. To this end, applications are installed on test accounts
by automating a Web browser.

Web tracker identification. Social network applica-
tion developers themselves rely on third-party components
for analytics and advertising. In-app advertising promises
revenue, while analytic products provide application devel-
opers with additional insights into their applications’ users.
Third-party analytics and advertising products raise major
privacy concerns, because they may track users across mul-
tiple websites. The web tracker identification submodule
identifies planted web trackers based on network traffic col-
lected with the analysis module.

Information leaks. Personally identifiable information
(PII) is information that can be used to uniquely identify
a single individual with or without additional data sources.
In case of online social networks, a user’s unique identifier
represents a sensitive PII. This submodule analyses whether
social networking apps leak PII to third-party components,
such as advertising and analytics providers. In addition
to information leaks of personally identifiable information
to third parties, application developers may unintention-
ally leak API authentication tokens through HTTP Ref-
erer. Therefore, this submodule traces leaks of tokens and
unique user identifiers in the collected traffic. HTTP request
(a) provides an example of leakage through an HTTP Ref-
erer header where “Super Analytics” receives a user’s unique
identifier as well as the app’s OAuth token through the Ref-
erer header of the HTTP request. The analytics provider
could then impersonate the application with the leaked ac-
cess token to access the user’s personal information.

(a) Information leakage via HTTP Referer

GET /__beacon.gif
Host: www.super -analytics.com
Referer: http ://www.fbgameexample.com/flash.php

?oauth_token=AAA ...&id =111111111& locale=
en_US

HTTP request (b) provides an example of PII leakage through
a URI request. In this example the third-party application
transfers unique identifiers directly to a third party.

(b) Information leakage via URI request

GET /api/v1/ip=...& uid =111111111& data =%7B%7D
Host: api.tripppleclick.net

Network fingerprint. The network fingerprint submod-
ule provides network metrics of a given social networking
app. The submodule first performs an analysis on the col-
lected network traffic to determine the application’s domain.

Subsequently, a number of metrics are collected on the appli-
cation domain. The network fingerprint submodule further-
more performs a non-intrusive service discovery scan against
the third-party systems by enumerating a list of TCP ports
accepting packets and their corresponding service banners
on the application host. Finally, the vulnerability search
submodule determines whether a third-party host uses out-
dated software that might eventually compromise the secu-
rity of their systems. This submodule matches discovered
service types and version numbers against publicly available
vulnerability databases.

4. EVALUATION AND APP SAMPLE
In this section we briefly discuss our research methodology

and outline the prototype implementation of our AppInspect
framework for Facebook. In the following we describe our
enumerated third-party application sample.

4.1 Methodology
We chose to implement an instance of our AppInspect

framework for the Facebook platform. Facebook serves as
a good example due to its popularity and the plethora of
available third-party applications. Facebook offers whitehat
accounts3 for security researchers, these accounts however
cannot interact with third-party applications. We there-
fore set up a number of experimental accounts with bogus
data, in order to perform automated application evaluations
without processing actual personal information. Once we
finished our experiments we deactivated all Facebook test
accounts. In order to detect third-party products, we used
traffic patterns from the Ghostery database, which contains
more than 1,200 ad networks and trackers[11]. We comple-
mented Ghostery’s traffic patterns with additional trackers
we identified during our traffic analysis. In order to find po-
tential vulnerabilities of application hosts, we fingerprinted
their publicly available web services in a non-intrusive way.
We strictly refrained from interfering with application web
services and instead based our analysis on detected service
banners.

4.2 AppInspect prototype
Search Module. Facebook offers two application direc-

tories that contain a tiny subset of their third-party appli-
cations. The majority of third-party applications, however,
is only retrievable with Facebook’s global search feature.
Therefore, we implemented three submodules to enumerate
third-party applications: an exhaustive search submodule
that generates application search terms and feeds them into
Facebook’s search, and two submodules to collect all appli-
cations from Facebook’s Timeline and Application Center
directories.

Classification Module. The classification module for
Facebook implements the collection of application type, per-
missions, rating, and language. A submodule of our frame-
work collects application properties based on application
info pages. The application type is determined based on
both harvested information and the application target URI.
The permission submodule detects application authentica-
tion dialogs and collects the set of requested permissions.
Finally, we implemented a generic language detection mod-

3https://www.facebook.com/whitehat/accounts/

https://www.facebook.com/whitehat/accounts/

ule that relies on the Google Translate API to detect and
translate non-English application names.

Analysis Module. The traffic analysis submodule auto-
mates the installation of a given Facebook application on
a test account and collects all traffic with a transparent
HTTP(S) proxy. Moreover, our prototype implements our
proposed analysis submodules. We implemented the infor-
mation leaks submodule, which probes the session recordings
for sensitive information. To detect information leaks we
verify whether our test account’s unique identifier or OAuth
tokens are transmitted to detected third-party products. We
inspect the collected traffic dumps for plaintext and Base64-
encoded unique identifiers and authentication tokens. In
order to reduce false positives of HTTP Referer leaks, the
information leaks submodule verifies whether information
is leaked to third parties other than application providers
themselves. Furthermore, we ignore leaks to content delivery
networks (CDNs) of Facebook (fbcdn.net) and application
providers (e.g. zgncdn.com). Leaks to other CDNs such as
Akamai or Amazon CloudFront are also less critical because
they do not track their users across multiple domains using
HTTP cookies. The network fingerprint submodule parses
web session recordings and determines the application host
based on the application’s OAuth session initialization. The
submodule, furthermore, uses the tracepath and dig util-
ities to collect network metrics. In addition to collecting
network metrics, the networking fingerprint submodule also
provides port scanning functionality. Finally, our prototype
implements a vulnerability submodule that searches for out-
dated software. A number of vulnerability databases exist
and we focus on databases with readily accessible exploits.
The vulnerability submodule thus searches within the Ex-
ploit Database[36] as well as for readily available Metasploit
modules[37].

4.3 Enumerated application sample
We performed an initial enumeration of applications in

April 2012 with search terms based on bigrams of the En-
glish alphabet. The search module was configured to harvest
information non-aggressively with a limit of 2,500 queries
per day. Facebook imposes rate limits on standard accounts
on a daily per-account basis. Therefore, we relied on a pool
of accounts set up for the experiment, which we rotated
during app analysis. Our first exhaustive search resulted in
234,597 applications. This first run helped us fine-tune our
exhaustive search module. In Mid 2012, we reran the search
module, this time with character trigrams based on the En-
glish alphabet and also on integers from 0 - 9. The exhaus-
tive search module enumerated 434,687 unique applications.
Our application directory submodules found 129 Timeline
applications and 108 applications in Facebook’s App Cen-
ter. Our search module successfully verified that all Time-
line and App Center applications were included in our enu-
merated application sample. In addition, we validated our
enumerated sample against Socialbakers application statis-
tics4. Our validation attempt showed that in addition to
including all Socialbaker applications, our approach found
a number of high-ranking applications that were missing in
their sample. We observed a great disparity in the monthly
active users (MAU) of the enumerated applications. Fig-
ure 3 illustrates our observation. While the great majority

4http://socialbakers.com/facebook-applications/

of applications had a MAU lower than 10,000, a small num-
ber of applications attracted a wider audience (red graph).
Relative to our sample’s cumulative application usage, the
top 10,000 apps covered 93.16 percent (green graph) of all
MAUs.

 0⋅10
0

 1⋅10
7

 2⋅10
7

 3⋅10
7

 4⋅10
7

 5⋅10
7

 6⋅10
7

 1 10 100 1000 10000 100000 1e+06
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

M
o
n
th

ly
 A

c
ti
v
e
 U

s
e
rs

 (
M

A
U

)

P
e
rc

e
n
t
o
f
C

u
m

u
la

ti
v
e
 M

A
U

Enumerated Application Sample

cumulative application usage
application usage

Figure 3: Active monthly users in our sample of 434,687
enumerated applications

We discarded all applications with fewer than 10,000 MAU
from our subsequent analysis because of their comparably
minor impact. In Autumn 2012, we performed an analysis
of the 10,624 most popular apps with AppInspect’s classi-
fier module. Our selected subsample covered 94.07% of all
applications relative to our samples’ cumulative application
usage. The results in Table 1 show the different application
types observed in our sample. 44.68% or 4,747 applications
belonged to the Authentication Dialog class. The Authen-
tication Dialog class represents canvas applications that re-
quest personal information from their users. The Canvas
class represents applications that load external content into
the Facebook canvas but do not require any personal in-
formation from their users to work. Connect applications
are external websites that leverage the Facebook API. Con-
nect applications often use Facebook as an identity provider
and to import Facebook content into their own portals. A
number of apps responded with an error or were canceled
(Defect). Page Add-ons are applications that provide add-
ons to Facebook pages; these apps have access to the content
of Facebook pages. The Mobile class, finally, represents ap-
plications that target mobile platforms such as Android or
iOS.

Application Type Applications Total %

Authentication Dialog 4,747 44.68%
Canvas 2,365 22.26%
Connect 2,260 21.27%
Defect 865 8.14%
Page Add-ons 280 2.64%
Mobile 107 1.01%
Total 10,624 100.00%

Table 1: Classification of most popular apps (n=10,624)

The relatively high number of defective applications can
be attributed to two independent observations. First, devel-
opers of less popular applications had trouble maintaining
reliable applications. As a result, a number of applications
responded with error codes or did not respond at all. Sec-
ond, Facebook’s application ecosystem is volatile and some

http://socialbakers.com/facebook-applications/

applications are available only for a limited timespan. In
the final step, the classification module leveraged the Google
Translate API to detect languages used. The majority of ap-
plications were English (64.72%), followed by Spanish and
German. In total, we observed 69 different languages.

5. RESULTS
This section describes the results of our extensive security

and privacy analysis of third-party applications. The in-
depth analysis was performed on the most popular Facebook
canvas applications that requested additional information.
These 4,747 apps represent a significant subsample of our
enumerated applications because they impact most users.

5.1 Requested personal information
Table 2 shows the most frequently requested permissions

to access personal information out of the 4,747 most popular
third-party applications. The most requested permission for
games was “publish posts to stream”, which allows an app
to post to a user’s profile. In total, 51.32% of these third-
party applications asked permission to publish to a user’s
stream. The table also shows that access to a user’s personal
email address was most commonly requested for generic apps
and by 46.07% of all third-party applications that requested
personal information. It is also interesting to observe that
access to users’ birth dates and photos are often requested
as well.

App Category

Permission game app Total %

Publish posts to stream 1,617 819 51.32%
Personal email address 1,055 1,132 46.07%
Publish action 435 857 27.22%
Access user’s birthday 582 428 21.28%
Access user’s photos 721 99 17.27%
Access data offline 517 120 13.42%
Access user likes 438 153 12.45%
Access user location 350 143 10.39%
Read stream 409 80 10.3%
Access friends’ photos 319 17 7.08%

Table 2: Most common requested permissions by third-party
applications (n=4,747)

We clustered applications based on their hosting domains
to identify application providers. Our results showed that
the 4,747 applications belonged to 1,646 distinct domains or
providers. Furthermore, 73.42% or 3,485 apps belonged to
a third party with more than one application. Third parties
that offer multiple applications can request different per-
sonal information with different applications. Once a user
installs more than one of their applications, providers can
simply aggregate all collected user information. Therefore,
we argue that requested permissions need to be analyzed
not only based on individual apps, but also based on appli-
cation providers. In this analysis, we found that the most
requested permission per application provider was access to
personal email addresses, which 60.24% of all providers re-
quested. Figure 4 depicts the number of distinct permissions
requested per application provider. The provider samples
are hereby sorted by their monthly active users. On aver-
age, providers requested close to three permissions. As our
figure illustrates, there are a number of application providers

that represent outliers because they request a vast amount
of different permissions from their users.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

least popular apps most popular apps

N
u
m

b
e
r

o
f
p
e
rm

is
s
io

n
s
 r

e
q
u
e
s
te

d

Mean = 2.91246

Figure 4: Number of requested permissions for 1,646 appli-
cation providers

Our results show that 40 providers (2.43% of all appli-
cation providers in our sample) requested more than 10
permissions. For these 40 providers, we manually verified
whether the requested permissions were in required for ap-
plication functionality. Our findings suggest that a number
of applications genuinely required a large amount of permis-
sions to function at all. These legitimate applications trans-
ferred large amounts of personal information to create their
own specialized social networks. Examples of such applica-
tions include dating and job seeking applications. Dating
applications, for example, gathered personal information to
offer matchmaking features. A number of providers that
requested more than 10 permissions, did, however, request
more permissions than were required to function. Especially
one application provider requested a excessive set of permis-
sions. This provider offered a total of 140 applications for
proverbs, quotes, and daily horoscopes in a number of differ-
ent languages. The provider’s most popular application was
a daily horoscope in Portuguese with 2.5 million monthly
users (as of November 2012). Their applications however ac-
cessed only users’ basic information. The applications thus
do not directly harm users by requesting 27 unnecessary per-
missions and it was interesting to observe the popularity of
this provider’s apps were not affected by the potential loss
of privacy. While the provider did not misuse the requested
permission to access additional personal information, leak-
age of access tokens would have serious implications.

5.2 Hosting environments
Our analysis of reverse DNS queries and network hops

showed that developers relied upon 604 distinct Internet
hosting services. Table 3 outlines the most commonly used
hosting services and their geographical location. Amazon’s
elastic cloud service hosted 18.72% of all third-party appli-
cations in our sample. Amazon EC2 was especially pop-
ular with developers of applications that attracted a large
number of active users. We also observed that the host-
ing services were geographically spread across 64 different
countries, although our analysis showed that the majority
of applications (55%) were hosted in the United States.

Our analysis module probed all 1,646 application hosts
for open TCP ports and corresponding software products.
All applications were accessible via HTTP but 11.5% of all
applications did not offer access via HTTPS, which made

Provider Location Total %

Amazon EC2 US (755), IE (82), SG (52) 18.72%
SoftLayer US (505) 10.65%

Peak Hosting US (244) 5.14%
Rackspace US (147), GB (11), HK (4) 3.41%
GoDaddy SG (51), US (29), NL (6) 1.82%

Linode US (72), GB (6), JP (2) 1.69%
OVH FR (42), PL (7), ES (2) 1.04%

Hetzner DE (47) 0.99%
Internap US (35) 0.73%

Table 3: Most commonly used Internet hosting services for
Facebook third-party applications

those applications inaccessible via a secure connection. Our
detailed results show that 55% of web servers were powered
by Apache httpd, followed by nginx (15.63%) and Microsoft
IIS (9.4%). An accessible web server that handles both
HTTP and HTTPS is the only requirement for a working
Facebook third-party application. However, we found that
third-party developers exposed a number of additional ser-
vices on their application hosts. Table 4 outlines the most
common publicly exposed services. It shows that 40.24%
of application hosting environments allowed access via SSH
and 38.91% access via FTP. The used products, together

TCP Port Service Hosts % Total

22 ssh 662 40.22%
21 ftp 640 38.88%
25 smtp 572 34.75%
110 pop3 439 26.67%
143 imap 417 25.33%

Table 4: Most common additional services on application
hosts

with their specific software versions, were used by the anal-
ysis module to identify hosts with potential software vul-
nerabilities. Our security analysis showed that HTTP and
FTP services posed the highest risks. Two hosts ran an out-
dated nginx version that is prone to a source code disclosure
vulnerability (CVE-2010-2263). Furthermore, we found two
outdated versions of ProFTPD that possibly allow an at-
tacker to execute arbitrary code on application hosts (CVE-
2006-5815, CVE-2010-4221). Eight hosts were susceptible
to these buffer overflow attacks via their FTP service. The
most popular of the eight application hosts gathered infor-
mation from an average of 1.2 million users per month. This
vulnerable application provider furthermore processes sensi-
tive personal information such as user email addresses and
dates of birth.

5.3 Web trackers
Our web tracker submodule identified 139 distinct web

trackers used by social apps. Table 5 outlines the most
common web trackers detected in our application sample.
Google dominated both with their web analytics product
and their online advertising products DoubleClick and Ad-
Words. Our analysis showed that web trackers were mostly
planted by online advertising products, which are used to
create additional revenue for application developers. All web
bugs presented in Table 5 potentially track their users across
multiple websites based on HTTP cookies.

Web bug Type Apps % Total

Google Analytics analytics 3,378 71.16%
DoubleClick advertising 529 11.14%
Google Adsense advertising 361 7.61%
AdMeld advertising 276 5.81%
Cubics advertising 153 3.22%
LifeStreet Media advertising 94 1.98%
Google AdWords advertising 91 1.92%
OpenX advertising 82 1.73%
Quantcast analytics 49 1.03%
ScoreCard Beacon analytics 48 1.01%

Table 5: Common web trackers in third-party apps

The ranking of web trackers changes slightly when the
popularity of the different applications is factored in. Based
on the total number of application users exposed to web
trackers, LifeStreet Media becomes the most popular adver-
tising product. Furthermore, analytics based on BlueKai
and advertising by Rubicon move to the top ten products
when ranking is based on cumulative monthly active users
instead of the cumulative occurrences.

5.4 Information leaks
Our findings suggest that ten advertising and analytics

products directly received users’ unique identifiers from so-
cial networking applications via URI requests. One adver-
tising provider even received our test user’s birthday and
gender in addition to the unique identifier. The following re-
quest shows an instance of the detected application provider;
however, we have replaced the actual host with a fictional
name.

Information leakage via URI request

GET /1111111111/ landingbirthday =5%2F2%2F1978&gender=
male

Host: notdisclosed.com

We observed that 315 social networking applications in our
sample directly transferred personally identifiable informa-
tion to at least one additional third-party product via HTTP
parameters. Three out of these 10 products were also pre-
viously classified as web trackers. This implies that these
three third parties can track users across multiple websites
with additional knowledge of their unique Facebook identi-
fier and, thus, their real name5. Two advertising products
that received unique user identifiers via URI requests were
also approved by Facebook as valid advertising products.

Our analysis showed that 51 applications leaked unique
user identifiers to third parties via the HTTP Referer header.
In addition to user identifiers, 14 out of these 51 applications
also leaked their API authorization tokens via HTTP Ref-
erer. Third parties could misuse leaked OAuth tokens to im-
personate the leaking apps and harvest additional personal
information. Referers were in both cases mainly leaked to
Google Analytics and DoubleClick. It became clear that a
popular game was affected by this issue, leaking on average

5The Facebook Graph API allows to query certain informa-
tion without the requirement of prior authentication. Given
a user’s unique identifier, one can simply perform a query
like: http://graph.facebook.com/4; where “4” in this ex-
ample is the unique user identifier of Mark Zuckerberg.

http://graph.facebook.com/4

4.7 million OAuth tokens and user identifiers per month to
third-party analytics and advertising companies.

6. DISCUSSION AND LIMITATIONS
In this section we discuss the implications of our findings

and possible limitations of our approach.

6.1 Detected malpractices
The evaluation of our novel AppInspect framework on

the basis of Facebook shows that automated security and
privacy analysis of social networking apps is feasible. Our
framework detected 14 application providers that requested
a disproportionate amount of personal information. These
application providers offer hundreds of applications and col-
lect sensitive personal information from millions of social
networking users. Our automated analysis showed that ap-
plication providers make use of 139 different web tracking
and advertising products. It furthermore showed that ap-
plication developers transmit personally identifiable infor-
mation to third parties. 315 applications directly transferred
user identifiers to third-party products via URI parameters.
In addition to receiving personally identifiable information,
two out of ten products set tracking cookies. Hence, a sin-
gle social networking app might lead to users being tracked
across multiple websites with their real name. Web track-
ing in combination with personal information from social
networks represents a serious privacy violation that is also
not transparent to social networking users. Finally, our
AppInspect framework detected that a number of applica-
tions leaked personal information and authentication tokens
to third-party products via HTTP Referer headers. 51 ap-
plications leaked user information and out of these, 14 ap-
plications also leaked authentication tokens. We found a
popular game that suffered from this implementation bug
and leaked 4.7 million authentication tokens per month on
average. After we ran our automated analysis, we manu-
ally verified all detected malpractices and implementation
errors. We reported our findings to Facebook in Novem-
ber 2012. Facebook confirmed our findings and reached out
to application developers to provide implementation fixes.
In May 2013, Facebook confirmed that all of our detected
malpractices have been fixed by application developers.

6.2 Application hosting infrastructure
The hosting infrastructure of social networking apps is

beyond the control of social networking providers and users
ultimately have to trust third-party developers with protect-
ing their personal data appropriately. Our findings show
that application developers rely on a wide range of custom
systems to provide social networking applications. Over one
third of all application hosts maintained publicly accessible
FTP and SSH services. While these services offer proper ad-
ministration tools, they also increase the attack surface of
application hosts. For example, both FTP and SSH are well
known to be popular targets of brute-force password guess-
ing attacks. Moreover, a number of application hosts used
outdated software versions that are susceptible to remote ex-
ploits. Our findings include an application host with more
than 1 million monthly active users that was susceptible to
a remote buffer overflow via their FTP service. Our anal-
ysis also showed that Amazon EC2 is a popular choice for
application developers. Insecure Amazon EC2 community
images may pose another security risk for third-party host-

ing infrastructures. Two recent publications [6, 2] came to
the conclusion that Amazon’s community images contain a
number of serious vulnerabilities. Our findings furthermore
showed that application servers were geographically spread
over 64 different countries. This geographical distribution,
finally, results in non-technical challenges because a great
number of different data protection laws apply.

6.3 Implications and protection strategies
Since January 2010, application developers on Facebook

can request users’ personal email addresses instead of prox-
ied email addresses. It is interesting to observe that 60.24%
of all providers in our third-party application sample made
use of this feature and requested the personal email ad-
dresses of their application users. Both social networking
providers and application developers host a pool of sensi-
tive personal information. Large social networking providers
possess the necessary resources to maintain and improve
the security of their services. In contrast, our findings sug-
gest that a considerable number of third-party developer
leak personal information to third parties and fail to harden
their systems. While application developers collect email
addresses to contact users directly, valid email addresses are
also in demand with spammers and phishers. Forbes [17] re-
ported that 1.1 million email addresses of social networking
users are sold for as little as 5 US$. According to the seller,
the information was collected via a Facebook third-party ap-
plication. In addition to valid email addresses, third-party
developers also collect information that enables sophisti-
cated email based attacks. For example, social phishing at-
tacks [27] leverage the success rate of traditional phishing
messages based on knowledge of a user’s friend. In the case
of Facebook, all applications can access friendship informa-
tion by default. Context-aware spam attacks [5] might also
misuse user birthdays or photos to increase the authenticity
of unsolicited bulk messages. Apps might be injected into
user profiles without their knowledge[24] and enable large-
scale campaigns with context-aware spam [25]. Based on
our findings, we propose the following protection strategies:

• Developers need to sanitize the landing page of their
application and ensure that they do not pass on unique
identifiers and authorization tokens via HTTP param-
eters.

• Developers need to provide third-party products that
require a unique user identifier with random identifiers
and maintain internal mappings between these random
identifiers and the real Facebook user identifiers.

• Social network providers should stress that application
developers should harden their hosting environments.

Finally, social network providers should follow the example
of LinkedIn or iOS App Store and manually review apps
before they make them available.

6.4 Dataset
We make our social networking dataset available online

to the research community6. Furthermore, our collected
dataset offers an important snapshot on application pop-
ularity, as Facebook stopped to make exact usage metrics
publicly online in January 2013. AppInspect is designed to

6http://ai.sba-research.org

http://ai.sba-research.org

steadily provide insights into third-party application ecosys-
tems, and we will, therefore, periodically refresh and expand
our dataset.

6.5 Limitations
Our AppInspect prototype is currently limited to Face-

book applications, but a number of submodules can be reused
when extending our prototype to other social networking
providers. In practice this would imply that both provider
specific modules (enumeration, classification module) had
to be adapted to the target OSNs, while we could reuse our
analysis module. Another limitation is our in-depth anal-
ysis, which focused on the most popular Facebook appli-
cations. The analysis of mobile applications and websites,
which leverage the Facebook API, are not included in our
sample. Our findings furthermore revealed the limitations
of automated security and privacy analyses of social net-
working apps. Our approach is unable to detect applica-
tions, which request a disproportionate amount of personal
information, without additional manual reviews. Detection
of information leakage to third parties is currently done by
spotting unique user identifiers and authentication tokens.
Hence, our framework does not automatically detect: leak-
age of personal data without inclusion of unique user iden-
tifiers, nor obfuscated personal information. In addition,
developers of malicious apps might decide to share or sell
personal information via hidden back-ends, or e.g. mail en-
tire data collections to third parties. Finally, due to the
non-intrusiveness of our performed security tests, our re-
sults indicate the vulnerability of application hosts and may
contain false positives and negatives.

7. RELATED WORK
This section surveys related research regarding social net-

working app security and privacy.

Social application studies
To the best of our knowledge, there has been no study on se-
curity and privacy issues of social networking apps of a scope
comparable to our work. Wang et al. [43] conducted the first
measurement study regarding the data collection practices
of third-party apps. Their study analyzed the 200 most
popular applications from nine different categories of Face-
book’s discontinued application directory. Based on their
collected dataset, their study showed the most commonly
requested permissions of 1,305 Facebook applications in De-
cember 2010. The Wall Street Journal conducted an inves-
tigation into information gathered by the 100 most popular
Facebook applications in May 2012 [1]. Their manual re-
view of popular applications found that applications often
seek permission to access sensitive information. Two re-
cent studies provide additional insights into permission sys-
tems of third-party applications: Chia et al. [8] studied the
effectiveness of user-consent permission systems through a
data collection of Facebook apps, Chrome extensions and
Android apps. They constructed a Facebook dataset with
27,029 apps by web scraping a social media analytics plat-
form’s list of Facebook applications. Chia et al. then col-
lected the requested permissions, popularity, and ratings of
apps in their dataset. The authors found that popularity
and ratings are not reliable indicators of potential privacy
risks associated with third-party applications. Frank et al.
[18] relied on Chia et al.’s dataset and used unsupervised

learning to detect permission request patterns. Their results
showed that permission patterns of low-reputation apps dif-
fered significantly from high-reputation apps.

Information leaks and web tracking
Krishnamurthy and Wills were the first to discover that
online social networks leak personally identifiable informa-
tion [32]. Their observation was confirmed by investigative
journalism of the Wall Street Journal, which found that
both advertising and tracking products received social net-
work user identifiers [41, 40]. In May 2011, Symantec also
found that third-party applications leaked OAuth tokens to
third parties [42] due to a now deprecated authentication
scheme of Facebook. Third-party web tracking is an exten-
sive search area of its own. Mayer and Mitchell [35] provide
an overview on current web tracking technology and poli-
cies. Krishnamurthy et al.[31] showed that 56 out of 100
popular non-OSN websites leak personal information. Mo-
bile applications pose similar challenges for user privacy as
social apps and web tracking. Evaluation of mobile apps is
however facilitated by access to the runtime environment of
apps. As opposed to third-party social applications, this en-
ables taint analysis of personal information [10], as well as
effective privacy protection on the client side [23]. In the fol-
lowing we briefly discuss social network specific protection
proposals.

User protection
Related work on user protection focuses on three main re-
search areas: security extensions to online social networks,
privacy preserving third-party data access, and improved
application authorization dialogs.

Generic security extensions aim to hide personal informa-
tion from social network providers as well as from third par-
ties without stopping users from sharing information. Guha
et al. [21] proposed NYOB, a method to substitute personal
profile information with pseudorandom content. Lucas and
Borisov [33] introduced flyByNight, a tool that relies on
public-key cryptography and a third-party application to
exchange confidential messages via Facebook. Their con-
cept only applies to messages; the remaining personal in-
formation is still exposed to social network providers and
third-party developers. Luo et al. [34] proposed FaceCloak,
where social network providers receive fake profile informa-
tion and real user data is stored encrypted on a separate
server. Users require passwords and a FaceCloak browser
extension to restore the real information. FaceCloak’s ap-
proach is similar to NYOB with the exception of requiring
additional servers. Beato et al. [3] finally proposed “Scram-
ble”, a generic method to shield confidential information
from social networking providers.

Felt and Evans [16] conducted a survey of the 150 most
popular Facebook applications in October 2007. Based on
their analysis, they proposed a privacy protection method
for social networking APIs. Their method suggests provid-
ing third-party developers with no personal information at
all but with a limited interface that only provides access to
an anonymized social graph. Developers would use place-
holders for user data, which the social network providers
would replace with actual user data. Felt and Evans’ design
is impracticable with state-of-the-art applications because
the majority of applications require personal information to
work. Singh et al. [39] proposed the “xBook” framework for

building privacy-preserving social networking applications.
Their xBook framework is based on information flow models
to control what an application provider can do with the per-
sonal information they receive. While their approach mit-
igates privacy and security issues of apps, it would require
all third-party developers to host their applications on the
xBook platform. Egele et al. [9] proposed fine-grained ac-
cess control over application data requests. Their suggested
solution, called “PoX”, relies on a browser plugin that medi-
ates application data access and a modified Facebook API
library for application developers.

Besmer et al. [4] evaluated a user interface prototype that
would help users to choose which information they want
to share with third-party applications. They found that
privacy-conscious users would benefit from their new user in-
terface, while careless users would continue to expose their
personal information to third-party developers. Wang et
al. [43] evaluated two alternative application permission di-
alogs to help users understand better how third-party ap-
plications function. The authors then proposed interface
design cues based on their user interface evaluation.

At the time of writing, none of the proposed generic OSN
security extensions are operational nor actively used, be-
cause researchers discontinued any further development. Fur-
thermore, none of the proposed privacy-enhancing frame-
works have been adopted by social network application de-
velopers. Finally, current authentication dialogs conceal
privacy-relevant information from users (see Figure 1) and
are in stark contrast to suggestions from previous usability
studies. In addition to missing protection strategies, previ-
ous studies either focused exclusively on requested permis-
sions or were limited to manually verifying a small number of
applications. Our AppInspect performs an automated anal-
ysis of requested permissions, information leaks, as well as
application hosting infrastructures. We thus aim to estab-
lish semantic protection methods [30] for social app users by
increasing the transparency of data transmission practices of
third-party developers.

8. CONCLUSIONS
Social networking applications have become a popular fea-

ture of online social networks and are used by millions of
users every day. In exchange for additional features, users
grant social networking apps permission to transfer their
personal data to third-party services.

In this paper, we proposed AppInspect to automatically
analyze security and privacy issues of social network third-
party applications. Our AppInspect framework first enu-
merates applications available for a given social network
provider. Next, AppInspect collects application metrics from
the social network provider. In a last step, AppInspect in-
stalls third-party applications on test accounts and analyzes
their network traffic. AppInspect analyzes the collected net-
work traffic for existing tracking software, information leak-
age to third parties, and application hosting infrastructure.
We have implemented our AppInspect framework and used
it to evaluate Facebook’s application ecosystem. AppInspect
automatically enumerated 434,687 unique Facebook appli-
cations and analyzed the most popular applications in de-
tail. Our findings helped improve the security and privacy
of social networking users. Finally, our results showed that
AppInspect is a practicable framework for detecting common
malpractices of third-party applications on a large scale.

Acknowledgements
Thanks to Balachander Krishnamurthy for shepherding this
manuscript and the anonymous reviewers for their valuable
feedback. This research was funded by COMET K1, FFG
- Austrian Research Promotion Agency and would not have
been possible without the financial support of the Vienna
PhD School of informatics. The authors would also like to
thank Manuel Leithner, Maciej Piec, and Sebastian Neuner
for their source code contributions.

9. REFERENCES
[1] Angwin, J., and Singer-Vine, J. Selling you on

facebook. The Wallstreet Journal (2012). last accessed
03/10/2013 http://online.wsj.com/article/

SB10001424052702303302504577327744009046230.

html.

[2] Balduzzi, M., Zaddach, J., Balzarotti, D.,
Kirda, E., and Loureiro, S. A security analysis of
amazon’s elastic compute cloud service. In Proceedings
of the 27th Annual ACM Symposium on Applied
Computing (2012), SAC ’12, ACM.

[3] Beato, F., Kohlweiss, M., and Wouters, K.
Scramble! your social network data. In Privacy
Enhancing Technologies, vol. 6794. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011, pp. 211–225.

[4] Besmer, A., Lipford, H., Shehab, M., and Cheek,
G. Social applications: exploring a more secure
framework. In Proceedings of the 5th Symposium on
Usable Privacy and Security (2009), ACM, p. 2.

[5] Brown, G., Howe, T., Ihbe, M., Prakash, A.,
and Borders, K. Social networks and context-aware
spam. In Proceedings of the 2008 ACM conference on
Computer supported cooperative work (2008), ACM,
pp. 403–412.

[6] Bugiel, S., Nürnberger, S., Pöppelmann, T.,
Sadeghi, A.-R., and Schneider, T. AmazonIA:
when elasticity snaps back. In Proceedings of the 18th
ACM conference on Computer and communications
security (2011), CCS ’11, ACM.

[7] Castelluccia, C., De Cristofaro, E., and
Perito, D. Private information disclosure from web
searches. In Privacy Enhancing Technologies (2010),
Springer, pp. 38–55.

[8] Chia, P. H., Yamamoto, Y., and Asokan, N. Is
this app safe?: a large scale study on application
permissions and risk signals. In Proceedings of the 21st
international conference on World Wide Web (2012),
WWW ’12, ACM, pp. 311–320.

[9] Egele, M., Moser, A., Kruegel, C., and Kirda,
E. Pox: Protecting users from malicious facebook
applications. Computer Communications (2012).

[10] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P.,
Jung, J., McDaniel, P., and Sheth, A. Taintdroid:
An information-flow tracking system for realtime
privacy monitoring on smartphones. In OSDI (2010),
vol. 10, pp. 255–270.

[11] Evidon. Ghostery. https://www.ghostery.com/.

[12] Facebook. Getting your apps into facebook search
faster. last accessed 04/27/2012 https://developers.

facebook.com/blog/post/2011/07/12/getting-

your-apps-into-facebook-search-faster/.

http://online.wsj.com/article/SB10001424052702303302504577327744009046230.html
http://online.wsj.com/article/SB10001424052702303302504577327744009046230.html
http://online.wsj.com/article/SB10001424052702303302504577327744009046230.html
https://www.ghostery.com/
https://developers.facebook.com/blog/post/2011/07/12/getting-your-apps-into-facebook-search-faster/
https://developers.facebook.com/blog/post/2011/07/12/getting-your-apps-into-facebook-search-faster/
https://developers.facebook.com/blog/post/2011/07/12/getting-your-apps-into-facebook-search-faster/

[13] Facebook. Permissions reference. last accessed:
08/10/2012 https://developers.facebook.com/

docs/authentication/permissions/.

[14] Facebook. Platform policies. last accessed
04/20/2013
https://developers.facebook.com/policy/.

[15] Facebook. Facebook platform launches, May 2007.
last accessed 08/15/2012
https://developers.facebook.com/blog/archive.

[16] Felt, A., and Evans, D. Privacy protection for
social networking APIs. In W2SP ’08 (2008).

[17] Forbes. Facebook investigating how bulgarian man
bought 1.1 million users’ email addresses for five
dollars. last accessed 11/03/2012
http://www.forbes.com/sites/andygreenberg/

2012/10/25/facebook-investigating-how-

bulgarian-man-bought-1-1-million-users-email-

addresses-for-five-dollars/.

[18] Frank, M., Dong, B., Felt, A. P., and Song, D.
Mining permission request patterns from android and
facebook applications. To appear: IEEE International
Conference on Data Mining (ICDM) 2012 (2012).

[19] FTC. In the matter of facebook, inc., a corporation,
Aug 2012. last accessed 06/05/2013 http://www.ftc.

gov/os/caselist/0923184/120810facebookcmpt.pdf.

[20] Google. Google launches opensocial to spread social
applications across the web, Nov 2007. last accessed
04/05/2012.

[21] Guha, S., Tang, K., and Francis, P. Noyb:
Privacy in online social networks. In Proceedings of the
first workshop on Online social networks (2008),
vol. 1, ACM, pp. 49–54.

[22] Hardt, D. The OAuth 2.0 authorization framework.
last accessed 02/05/2012 http:

//tools.ietf.org/html/draft-ietf-oauth-v2-31.

[23] Hornyack, P., Han, S., Jung, J., Schechter, S.,
and Wetherall, D. These aren’t the droids you’re
looking for: retrofitting android to protect data from
imperious applications. In Proceedings of the 18th
ACM conference on Computer and communications
security (2011), ACM, pp. 639–652.

[24] Huber, M., Mulazzani, M., Leithner, M.,
Schrittwieser, S., Wondracek, G., and Weippl,
E. Social snapshots: digital forensics for online social
networks. In Proceedings of the 27th Annual Computer
Security Applications Conference (2011), ACM,
pp. 113–122.

[25] Huber, M., Mulazzani, M., Weippl, E., Kitzler,
G., and Goluch, S. Friend-in-the-middle attacks:
Exploiting social networking sites for spam. IEEE
Internet Computing 15, 3 (2011), 28–34.

[26] Hull, G., Lipford, H., and Latulipe, C.
Contextual gaps: privacy issues on facebook. Ethics
and information technology 13, 4 (2011), 289–302.

[27] Jagatic, T., Johnson, N., Jakobsson, M., and
Menczer, F. Social phishing. Communications of the
ACM 50, 10 (2007), 94–100.

[28] King, J., Lampinen, A., and Smolen, A. Privacy:
is there an app for that? In Proceedings of the Seventh
Symposium on Usable Privacy and Security (2011),
ACM, p. 12.

[29] Ko, M. N., Cheek, G., Shehab, M., and Sandhu,
R. Social-networks connect services. Computer 43, 8
(2010), 37 –43.

[30] Krishnamurthy, B. Privacy and online social
networks: Can colorless green ideas sleep furiously?
IEEE Security & Privacy 11, 3 (2013), 14–20.

[31] Krishnamurthy, B., Naryshkin, K., and Wills,
C. Privacy leakage vs. protection measures: the
growing disconnect. In Web 2.0 Security and Privacy
Workshop (2011).

[32] Krishnamurthy, B., and Wills, C. E. On the
leakage of personally identifiable information via
online social networks. In Proceedings of the 2nd ACM
workshop on Online social networks (2009), ACM,
pp. 7–12.

[33] Lucas, M., and Borisov, N. Flybynight: mitigating
the privacy risks of social networking. In Proceedings
of the 7th ACM workshop on Privacy in the electronic
society (2008), ACM, pp. 1–8.

[34] Luo, W., Xie, Q., and Hengartner, U. Facecloak:
An architecture for user privacy on social networking
sites. In Computational Science and Engineering,
2009. CSE’09. International Conference on (2009),
vol. 3, IEEE, pp. 26–33.

[35] Mayer, J., and Mitchell, J. Third-party web
tracking: Policy and technology. In 2012 IEEE
Symposium on Security and Privacy (SP) (2012),
pp. 413 –427.

[36] Offensive Security. Exploits database.
http://www.exploit-db.com/.

[37] Rapid7. Metasploit vulnerability and exploit
database. http://www.metasploit.com/modules/.

[38] SEC. Amendment no. 4 to form s-1, facebook, inc.,
Apr 2012. last accessed 08/01/2012
https://www.sec.gov/Archives/edgar/data/

1326801/000119312512175673/d287954ds1a.htm.

[39] Singh, K., Bhola, S., and Lee, W. xBook:
redesigning privacy control in social networking
platforms. In Proceedings of the 18th conference on
USENIX security symposium (Berkeley, CA, USA,

2009), SSYM’09, USENIX Association, p. 249âĂŞ266.

[40] Steel, E., and Fowler, G. a. Facebook in privacy
breach. Wall Street Journal (2010).

[41] Steel, E., and Vascellaro, J. E. Facebook,
MySpace confront privacy loophole. Wall Street
Journal (2010).

[42] Symantec. Facebook applications accidentally leaking
access to third parties. last accessed 06/20/2012
http://www.symantec.com/connect/blogs/

facebook-applications-accidentally-leaking-

access-third-parties-updated.

[43] Wang, N., Xu, H., and Grossklags, J. Third-party
apps on facebook: privacy and the illusion of control.
In Proceedings of the 5th ACM Symposium on
Computer Human Interaction for Management of
Information Technology (2011), ACM, p. 4.

https://developers.facebook.com/docs/authentication/permissions/
https://developers.facebook.com/docs/authentication/permissions/
https://developers.facebook.com/policy/
https://developers.facebook.com/blog/archive
http://www.forbes.com/sites/andygreenberg/2012/10/25/facebook-investigating-how-bulgarian-man-bought-1-1-million-users-email-addresses-for-five-dollars/
http://www.forbes.com/sites/andygreenberg/2012/10/25/facebook-investigating-how-bulgarian-man-bought-1-1-million-users-email-addresses-for-five-dollars/
http://www.forbes.com/sites/andygreenberg/2012/10/25/facebook-investigating-how-bulgarian-man-bought-1-1-million-users-email-addresses-for-five-dollars/
http://www.forbes.com/sites/andygreenberg/2012/10/25/facebook-investigating-how-bulgarian-man-bought-1-1-million-users-email-addresses-for-five-dollars/
http://www.ftc.gov/os/caselist/0923184/120810facebookcmpt.pdf
http://www.ftc.gov/os/caselist/0923184/120810facebookcmpt.pdf
http://tools.ietf.org/html/draft-ietf-oauth-v2-31
http://tools.ietf.org/html/draft-ietf-oauth-v2-31
http://www.exploit-db.com/
http://www.metasploit.com/modules/
https://www.sec.gov/Archives/edgar/data/1326801/000119312512175673/d287954ds1a.htm
https://www.sec.gov/Archives/edgar/data/1326801/000119312512175673/d287954ds1a.htm
http://www.symantec.com/connect/blogs/facebook-applications-accidentally-leaking-access-third-parties-updated
http://www.symantec.com/connect/blogs/facebook-applications-accidentally-leaking-access-third-parties-updated
http://www.symantec.com/connect/blogs/facebook-applications-accidentally-leaking-access-third-parties-updated

	Introduction
	Social Networking Apps
	Facebook Platform
	Application directories and reviews

	AppInspect
	Search module
	Classifier module
	Analysis module

	Evaluation and App Sample
	Methodology
	AppInspect prototype
	Enumerated application sample

	Results
	Requested personal information
	Hosting environments
	Web trackers
	Information leaks

	Discussion and Limitations
	Detected malpractices
	Application hosting infrastructure
	Implications and protection strategies
	Dataset
	Limitations

	Related Work
	Conclusions
	References

