
Windows Installer Security

C. Kadluba1, M. Mulazzani2, L. Zechner2, S. Neuner2, E. Weippl2
1University of Applied Sciences Technikum Wien

2SBA Research
christian.kadluba@gmail.com, {mmulazzani, lzechner, sneuner, eweippl}@sba-research.org

Abstract

Windows Installer has been an integral part of Microsoft
Windows for a long time and is the standard method of soft-
ware management and deployment on this operating sys-
tem. Since this technology exists for quite a while and is
heavily used, it is worth to take a look at it from the secu-
rity perspective, in particular regarding the risks users face.
This paper shines light on the risks that can arise from the
content in untrusted installer packages. For one, we analyze
the variable importance of different data regions within an
msi file and the consequences of flipping a single bit, possi-
bly resulting in corrupted content and/or installation logic.
A specially developed analysis script shows that malware
detection in MSI files can be significantly improved com-
pared to normal scans with conventional anti-virus prod-
ucts. The method is tested with MSI packages prepared
with malware samples and the results are compared to nor-
mal AV scanning. Lastly, we created a metric to allow the
advanced users to evaluate the possible risks of a given msi
installer file prior to installation. Installer packages of freely
available, and very popular products are analyzed with this
scripts to get a picture of the current practice of authoring
security during setup throughout the software industry.

1 Introduction

Windows Installer is an integral part of the Microsoft
Windows operating system and as such responsible for
installing, uninstalling and changing applications on a
computer. In the world of Windows it is the standard
method of software deployment. Typically, the software to
be installed is packaged together with the setup logic in a
file that has the extension .msi, which is called an installer
package. Windows Installer was first released 1999 together
with Microsoft Office 2000, and has been installed on every
Windows machine since. During installation of msi files the
contents of the msi package are extracted by the Windows
Installer and the system is modified as specified by the
author of the package. Some of those modifications require
more privileges than normally granted to the desktop
user, therefore parts of Windows Installer run with system
privileges as described in [6].

This paper focuses on the risks and threats which can
arise from installing and executing untrusted msi packages.

When users download packages from the Internet, it is
hard to find out what the package will actually do on the
system. This includes the types of actions the package will
perform when being installed as well as the privilege level
that it will request. The second topic is malware detection
in msi packages, which we will show is poor compared
to standard signature-file based malware detection as
deployed on client computers today.

This paper shows two new methods of statically analyz-
ing msi packages without installing them. The first method
shows how to improve the detection rate of malware scan-
ners in msi files and also gives information about criticality
depending on execution privileges and other information
extracted from the msi file. The method is evaluated by
scanning infected msi files and comparing the results to
scans of the statically analyzed files using conventional AV
scanners. This advanced analysis technique incorporates
the extracted files as well as the metadata from msi files
and analyzes them with any installed AV product. The
second part demonstrates a method to analyze an msi
file and detect authoring that is not malicious but still
could cause unintended risks for the user. Such authoring
includes excessive use of Custom Actions and elevated
privileges. A script was developed that does a number
of checks on an msi file and calculates a risk score based
on the results. A selection of popular msi files, like the
installers of Google Chrome or Skype, is analyzed with
the script and the results are discussed. This gives an
impression about the msi security awareness of software
vendors.

To summarize, the contributions of this papers are:

• We analyze the internals of msi files using file fuzzing.

• We analyze malware and AV scanners with respect to
msi files.

• We present a risk metric based on our insights into msi
files.

• We will release the code under an open source license1.

The rest of the paper is organized as follows: Section 2
gives a brief background on msi files and related work. Sec-
tion 3 describes our fuzzer and how it was used to analyze

1https://github.com/kadluba/MsiScripts

https://github.com/kadluba/MsiScripts


different msi files by looking at the resulting error codes.
In Section 4 we analyze malware in msi files, and evaluate
it using virustotal.com as well as Microsoft Security Essen-
tials. In Section 5 we present our risk metric for msi files
and evaluate it with popular real-world msi installer files.
We discuss our results in Section 6, before we conclude in
Section 7.

2 Background

Windows Installer packages are the de facto standard for
installing software in Windows and as such they usually
contain executable code. However, the format of msi is
not officially specified and also not covered by Mircosoft’s
Open Specification Promise2. But, for one, there is the
executable of the application to be installed, which is
copied to the system during installation. On the other
hand the packages can contain Windows Installer Custom
Actions. These are typically program files embedded in the
package which are used to carry out installation tasks that
cannot be accomplished by the built-in Windows Installer
functionality and are specified by the creator of the msi
file. Msi files can furthermore be packed or fragmented
since msi packages are essentially a file system within a
file [13]. Additionally the msi installer packages contain a
structure of features and components which are combined
with conditions and execution privileges. This can be
understood as the setup logic of the package and thereby
controls the installation of program files and execution of
Custom Action binaries.

Beside the program files, an msi file also contains a re-
lational database consisting of a set of standardized tables
as described in [9]. This Installer Database contains all
information necessary to install the product including the
aforementioned setup logic. The Binary table also contains
binary files used during the installation, which can include
DLLs executed by Custom Actions. Most of the setup logic
in the packages is in fact a declarative description of how
the installed application should look like. How the desired
system state is achieved is mostly up to the routines imple-
mented in the Windows Installer service. The concept is to
describe the installation rather than to script it. Custom
Actions allow the authors of msi packages to execute cus-
tom code during the installation. This code can be either
included in the package, mostly as embedded DLLs, or it
could come from another source, like an executable which
is already present on the system. With Custom Actions,
Windows Installer essentially allows execution of arbitrary
code with system privileges.

2.1 Related Work

There is not much work available in the literature on the
security of msi files or packet managers in general. Cappos
et al. [1] analyzed the security of multiple packet managers

2http://www.microsoft.com/openspecifications/en/us/

\programs/osp/default.aspx

like APT and YUM for Linux and Unix, whereas [15] dis-
cusses improvements to the security of these packet manage-
ment systems regarding authenticity and integrity. Di Rus-
cio [14] describes strategies to overcome problems between
upgrades. In the area of static analysis for software installa-
tion, recnet work focused on analyzing Android APKs since
the Android ecosystem has a special permission set for ap-
plications [2] and APK files can be leveraged for static anal-
ysis [5, 16]. Recent work in the area of malware detection
focuses on the usage of packers [11, 12, 17], which is related
to our work with regard to msi files since msi files (as we will
show later) can be used to reduce detectability of contained
malware for standard anti-virus detection.

3 Fuzzing MSI Packages

To assess to what extend msi packages are prone to ma-
nipulation and its possible consequences we wrote a simple
fuzzer to manipulate msi packages and tested the conse-
quences by collecting the error codes of Windows Installer.

3.1 msi Fuzzer

Our fuzzer iterates over a given msi package and changes
bits to measure the consequences on the installation and
deinstallation process. A powershell script automates this,
and the bits chosen to be manipulated are either chosen
at random or sequentially. Depending on the size of the
msi package, sequentially flipping all bits can take a consid-
erable amount of time since the software will be installed
and removed again. If you consider a msi package with 100
kilobytes and assume that installation and removal takes
approximately 10 seconds, this results in a total runtime of
95 days. Logging mechanisms keep track of the particular
bits flipped via offset, the date and time, and the return
value of msciex after trying to install it.

3.2 Conducted Tests

We initially implemented the random selection of bits
to flip, in order to get a fast estimation of results and
the corresponding error codes and consequences. For
evaluation we fuzzed two packages in sequential mode:
for one WixLanguage.msi, which is a simple 124 kilobyte
example msi from the book [6] without Custom Actions.
The other package was a simple msi with an Authicode
signature named SignedSetup.msi. It was created using
Windows Installer XML and signed using a self-signed
certificate from the book. To speed up the process we split
the fuzzing across multiple virtual machines.

The different error codes we observed were as follows: 0,
1603, 1605, 1613, 1620, 1623, 1625, 1633.

• 0 denoted that the installation was successful.

• 1603: fatal errors during installation

• 1605: action only allowed for installed packages

• 1613: A higher version of Windows than the one cur-
rently running is needed.

http://www.microsoft.com/openspecifications/en/us/\programs/osp/default.aspx
http://www.microsoft.com/openspecifications/en/us/\programs/osp/default.aspx


• 1620: unable to open installation package

• 1623: package language not supported

• 1625: installation prevented by system policy

• 1633: unable to install on this platform

Error -100 in the Figure below is special so far as it is
not an actual error code from Windows Installer, but an
arbitrary value assigned from us for packages which we
could install, but did not remove afterwards. The second
package had the additional error codes 87 (parameter is
invalid), 1601 (unable to access Windows Installer) and
1631 (unable to start Windows Installer daemon). The
results are visualized in Figure 1 for WixLanguage.msi and
Figure 2 for SignedSetup.msi. Please note that the x-axis
represents the offset in the file.

Figure 1: Error codes when fuzzing WixLanguage.msi

Figure 2: Error codes when fuzzing SignedSetup.msi

3.3 Discussion of Results

On a first sight there was not much similarity between the
results from fuzzing those two packages. However, the first
512 bytes had almost identical content and error codes, as
they contain the header information for the entire pack-
age. Furthermore, both packages had areas filled with ze-
roes where there was no error induced due to fuzzing. We
speculate that these areas are not used during the instal-
lation process. We also found that the signature of the
second msi file had no consequence on the ability to install
the fuzzed msi. Apparently it is only used to assess whether
the issuer is trusted, but not for protecting the integrity of
the files.

4 Malware in MSI

The existence of executable code within the msi files makes
them a subject for anti-virus scanning. The binaries in-
cluded in the packages could be infected with malware, so
scanning for viruses is desirable before installing them. This
is referred to as “baseline ecosystem cleaning” as explained

in [18]. We present a new method to improve the effective-
ness of conventional anti-virus products when scanning msi
files and compared to conventional scanning of the msi files.

4.1 msi Files Extractor

To analyze executable code from the different possible
sources within an msi file, we wrote a script that extracts
the different types of content of a given msi file. We then
scanned the extracted files with an installed AV scanner.
The setup logic of the msi file is taken into account so that
a better risk assessment is possible when infected binaries
are found. Our script also analyzes parts of the msi file
which are never executed or used during setup. While
this might be overprotective, it is worth questioning why
a possibly malicious file is shipped with an msi file, but
not used during installation. Every infected file should be
taken seriously since the actual infection and execution of
malicious code could take place by other means than the
Windows installer and can therefore not be detected exclu-
sively by looking at the setup logic and structure within the
msi file. However, knowing about the installation behavior
of infected contents of an msi file can serve as an additional
guideline for risk assessment. We then use the extracted
files to assess whether the extraction of files increase the
likelihood for anti-virus products to detect them. Since
content in msi files can be packed and fragmented [11, 12]
the detection rate is expected to increase as anti-virus
engines are in general not expected to extract this custom
file format logic during signature-based analysis.

In the first evaluation step the msi script extracts all files
and tables from the msi package. The tables will be ex-
tracted as simple text files with tabulator-separated values
and header lines with the column names and data types.
Those files will then be parsed by the further analysis steps
of the script. The script then iterates over the extracted
program files. Each of them is scanned with the installed
AV scanner which is not specified by the script and treated
as a black box. If an infection is found, the extracted tables
File, Component and FeatureComponent are analyzed
to find out if the file can actually be installed or if it’s
only an orphaned part of the msi package belonging to no
feature. Another possibility is that the file is part of one
or more features but its installation is disabled by a logical
condition which is always false. Both cases are common
if setup developers disable a part of the product without
actually removing it from the msi package. This approach
is equivalent to commenting some lines in the source code
of a program instead of deleting them. In this way the
removed parts can be easily restored later, if the product
management changes their mind. The script displays a
message for every infected program file. If the file seems
not to be installable according to the setup logic only an
informational message is displayed, whereas a warning
message appears for infected files which may actually be
installed.

In the last step, the script iterates over the files extracted
from the Binary table. Every binary file is scanned for



known viruses by the local anti-virus engine. If an infec-
tion is found, the tables CustomAction, InstallUISequence,
InstallExecuteSequence and ControlEvent are searched for
the infected Binary table file. Like before, this step is done
to find out if the file is actually used by any Custom Action
and if logical conditions do not prohibit its execution. Ad-
ditionally it is checked if the Custom Action can run with
user privileges or with system privileges (elevated). Like for
the program files in the previous step, the message shown
by the script for infected Binary table files depends on the
actual usage of the file and the privileges it is allowed to
run with.

4.2 Conducted Tests

For evaluation of our msi extraction analysis, we gener-
ated a set of msi test files. Four base packages were cre-
ated and used for analysis: Package 1 contains infected
program files which are installed during setup. Package
2 contains infected program files which are not used dur-
ing installation, thus representing the previously described
possibility of malicious dead code. Package 3 contains in-
fected Binary table items which are used in Custom Actions,
whereas Package 4 contains infected Binary table items
which are not used for any Custom Actions. We created
mutations of those four baseline packages, including vari-
ous malware samples. The malware samples were down-
loaded from http://www.eicar.com and the Open Mal-
ware Database at http://www.offensivecomputing.net.
Table 1 shows a list of the used malware samples. To cre-
ate the different msi installer files we used the Windows
Installer Xml Toolset 3.6.3303.1.

Malware Description
Eicar EICAR-AV-Test
Parite W32/Parite.B
Hahor VirTool.Hahor.A
Lolol Worm/Lolol

Webdav Exploit.Webdav-4
Iexploiter Backdoor.Iexploiter.A

Bifrose Backdoor.Win32.Bifrose.d
Setcrack Trojan.Win32.Setcrack

Table 1: Used Malware Samples

We combined the four base package types with all of the
used malware samples, resulting in 36 msi files. For refer-
ence, we also scanned the initial malware code. The results
during our evaluation are shown in Table 2. The number
in the cells show the the number of scan engines that de-
tect the malware using http://www.virustotal.com. This
web service uses 46 different AV scanners to analyze an up-
loaded file regarding viruses. The number in each cell shows
how many out of the 46 scanners detected an infection. The
last column shows scan results when uploading the malware
sample binary itself. This was done to verify if the sample
could be detected by the used AV scanners at all and, more
important to see if the scanners perform worse when the
malware is inside an msi file compared to scanning the bare
malware file alone.

P
a
ck

a
g
e
1

P
a
ck

a
g
e
2

P
a
ck

a
g
e
3

P
a
ck

a
g
e
4

M
a
lw

a
re

None 0 - 0 - -
Eicar 16 16 14 14 42
Parite 17 17 23 22 42
Hahor 17 17 21 22 38
Lolol 18 18 22 22 42
Webdav 12 12 18 19 38
Iexploiter 15 15 21 21 39
Bifrose 17 17 23 23 39
Setcrack 17 17 23 23 40

Table 2: VirusTotal Scan Results

Table 3 and 4 show the results when the test packages
were scanned using a local anti-virus scanner. In this partic-
ular experiment the locally installed scanner were Microsoft
Security Essentials version 4.1.522.0 with virus definitions
as of 2012-12-31 and AVG 2013.0.2805. Both are also part
of the 46 scan engines used by VirusTotal and as such any
other scan engine could have been used. This experiment
was run to show the same methodology in local context. A
checkmark in the table indicates that the infected file was
correctly identified, respectively that the installer package
without any malware was not classified as malicious.

P
a
ck

a
g
e
1

P
a
ck

a
g
e
2

P
a
ck

a
g
e
3

P
a
ck

a
g
e
4

None ! - ! -

Eicar ! ! ! !

Parite ! ! ! !

Hahor ! ! ! !

Lolol ! ! ! !

Webdav ! ! ! !

Iexploiter % % % !

Bifrose ! ! ! !

Setcrack ! ! ! !

Table 3: Microsoft Security Essentials Scan Results

4.3 Discussion of the Results

Regarding the results, we were able to show in the first ex-
periment that most AV scanners have problems detecting
infected files within msi files. This is probably because the
files can be packed and fragmented within the msi package,
which obscures signatures that AV scanners are looking for.
The results of the scan with VirusTotal in Table 2 clearly
indicate this. The last column shows that the majority of
the 46 AV scanners could detect the malware sample when
it was uploaded directly. In comparison, the other columns
show that not even half of the scanners could detect the
same sample when it was packed into an msi file. Further-

http://www.eicar.com
http://www.offensivecomputing.net
http://www.virustotal.com


P
a
ck

a
g
e
1

P
a
ck

a
g
e
2

P
a
ck

a
g
e
3

P
a
ck

a
g
e
4

None ! - ! -

Eicar ! ! ! !

Parite ! ! ! !

Hahor % % % !

Lolol ! ! ! !

Webdav % % % !

Iexploiter ! ! ! !

Bifrose ! ! ! !

Setcrack ! ! ! !

Table 4: AVG Scan Results

more it comes to no surprise that the anti-virus scanners
do not take the setup logic and execution privileges of the
infected contents into account. Therefore the VirusTotal
scanners show all infected contents as equally critical. In
the case of the test packages which do not install or use the
infected contents (package 2 and 4) this can be considered
as false positives. However, as noted before, any infected
file should be taken seriously, even if the malicious content
does not seem to be used.

Regarding the local scans with Microsoft Security Essen-
tials as well as AVG we were able to see that both ignore
the setup logic which are part of the msi files, as shown
in Tables 3 and 4. The test files are classified as mali-
cious even though the malware resides in dead code. As
such our results indicate that for a qualified risk assessment
the incorporation of logic is important. One thing that is
interesting is that the Ieploiter malware sample could not
be detected by Microsoft Security Essentials when it was
used in any of the four test msi files, except in Package 4.
Scanning the original Iexploiter malware sample file directly
with Microsoft Security Essentials confirmed that it could
not be detected by the scanner. Taking a closer look at
the files exported from the msi packages showed that they
get marginally changed by the tool we used, MsiDB.exe.
Thus, Microsoft Security Essentials detected not the origi-
nally embedded malware in the mutated file from Package
4.

5 Detailed MSI Package Analysis

To ease the decision for users whether an untrusted msi file
can do any harm to the user’s computer, we developed a
metric for assigning a risk score to unknown msi files. As
outlined before, Windows Installer is able to do arbitrary
system modifications with elevated privileges depending
on the contents of the package processed. Essentially it
is like running an unknown program which is possibly
executed with system privileges. Therefore it is important
to find out if it is in fact using system privileges or not
and to get an overview about what types of actions it will
execute. Even if an msi file contains no malware, it can

still pose risks caused by undocumented and unexpected
behaviour, system modifications or collection of private
data. Additional risk can come from bugs in the setup
logic, malicious modification of msi files by a third party,
or wrong usage of the installer package.

Our risk metric is implemented in a script which a user
can run prior to installing a package by statically analyz-
ing the msi package. It determines if the msi file uses ele-
vated privileges, checks for Custom Action types and other
things. Regarding the technical capabilities of the Win-
dows Installer, we believe that the use of Custom Actions
should be discouraged, and should only be used if the nec-
essary installation tasks cannot be carried out by Windows
Installer’s standard functionality. The reason why Custom
Actions should not be used is not only security but because
they have implications on the transaction safety of the in-
stallation process as described in [9]. Like Custom Actions,
there is also a number of other possibly problematic options
that could be used by the author of an msi package. Our
tool tries to detect those and provides these information
to the user which can be used to assess the possible risks
before installing a package. The used analysis technique is
comparable to the work described in [5], where the permis-
sion settings of Android APK images are statically checked.
In our experiments the script is used to analyze msi pack-
ages of some popular products such as Google Chrome or
Skype. This is done to get an idea of the security standard
that software vendors apply when authoring their Windows
Installer packages and the amount of possible risk that users
of common msi packages are typically exposed to according
to our metric.

5.1 Design and Risk Metric

In the first step our analysis script extracts all contents
from the msi file. It then does a number of checks on the
extracted table files, to find actions and intents which could
be and are therefore considered dangerous in our analysis.
We conduct different checks according to three categories,
described below. However, our analysis is testing for the
presence respectively absence of certain features which are
possible with Windows Installer and within the setup logic.
We do not analyze the code executed, and further analysis
of the code is necessary to know what the code actually
does. [3], [16] and [7] describe similar methods for static
code analysis. An overview of all statically conducted
checks can be seen in Table 5. Based on the results of the
checks, a risk score is calculated and displayed. The higher
the score, the higher the possible risk caused by the msi file.

The risk metrik is simple in regard that the higher the
value, the higher the potential harm the msi file can do
to the computer. The overall checks who score one point
can be seen in Table 5. Custom Actions that run code
from within the package add two points, while arbitrary
system commands add five points to the overall risk score.
The number of Custom Actions is irrelevant, since one is
already enough to manipulate the system in a malicious
way. Elevated Custom Actions add twice the points.



Type Check Description

Global Checks

Signature Checks for valid Authenticode signature
Read-only Checks if the package is read-only during installation

Disable Elevation Checks if elevation is disabled for the package
Admin Image Checks if this package is an administrative image

Compressed Media Checks for external storage of program files
Per-User Installation Checks the default installation mode of the package

System Privilege Custom Actions

Embedded DLL Checks for Custom Actions executing an embedded DLL
File Execution Checks for executed files installed by the package

Command Checks for Custom Actions that execute a command.
Property Checks whether a Windows Installer property is set.

User Privilege Custom Actions

Embedded DLL Checks for Custom Actions executing an embedded DLL
File Execution Checks for executed files installed by the package.

Command Checks for Custom Actions that execute a command.
Property Checks whether a Windows Installer property is set.

ControlEvent Checks for ControlEvent Custom Actions

Table 5: All Checks for our msi risk assessement

Regarding the global security of every msi package, we
check for certain specific flags or features. For one we
test if the msi package has a signature as described in [8].
This signature protects against file corruption, and is not
specific to Windows Installer. It is the same signature for
all executables and dynamic libraries in Windows, and
can be added with the SignTool from Microsoft. We also
check whether the package is marked read-only during
installation. If this is not set the setup logic and the binary
files can be modified by Custom Actions or by external
processes using the Windows Installer API, allowing for
self-modifying code during setup. The third check tests if
elevation is globally disabled for the package, as Windows
Vista and later only run Custom Actions elevated if eleva-
tion is not globally disabled for the package. We also test
if the package is an administrative image. Administrative
images are a Windows Installer feature often used by
administrators to provide pre-configured installations, and
they usually consist of the msi file accompanied by other
files. Therefore they offer more possibilities for malicious
manipulation compared to a single msi file. Compressed
Media checks if the media cabinets which containing
the program files to be installed are externally stored.
This method has the same problem as administrative
images, and protection against file manipulation is more
difficult than for a single file. Lastly, Per-User Installation
checks the default installation mode of the package, as
Windows Installer offers two installation modes: Per-User
and Per-Machine. Per-User installs are preferred as their
capabilities are limited compared to Per-Machine installs.

The second category of checks is conducted with regards
to Custom Actions which run with elevated privileges.
An msi package creator can specify that those custom
actions run in the context and with the privileges of the
system account [10] depending on the elevation setting of
the whole package and the configuration of the machine
as documented in [9]. These Custom Actions are very
critical as they can potentially make any changes on the
system. Custom Actions can execute various vectors with
system privileges: embedded dynamic libraries (DLL),

which are part of the msi package, files that are part of
the msi package and commands that are defined within
the Custom Action and executed with system privileges.
These executed commands are considered as very critical,
since they can execute any program the system has access
to. This includes programs on removable media and
network drives. It cannot be foreseen what programs will
be accessible during the installation, therefore this type of
Custom Action contributes the most to the risk score. The
forth check tests for Custom Actions that set a Windows
Installer property, which are variables that can be used by
the setup logic during the installation.

Table 5 further shows checks for custom actions that run
with user privileges. They are not as dangerous as elevated
Custom Actions but still a possible risk since they can also
be used to execute code. Like before with the elevated Cus-
tom Actions, we test for execution of embedded DLLs, files
and commands, as well as if the package sets a property
during execution. The only additional check is whether the
msi contains ControlEvent Custom Actions. These are Cus-
tom Actions triggered by controls on the setup dialogs like
buttons and can execute code embedded in the msi pack-
age similar to embedded DLLs. They always run with user
privileges. Finally it should be mentioned again that we
only check if Custom Actions of these various types exist
and are used during the installation. Examining the code
of the Custom Actions is not part of the process.

5.2 Conducted Tests

For evaluating our derived security risk metric, we used a
small sample of publicly available msi files for standard soft-
ware obtained from the internet. Table 6 lists the msi files
which were used in the tests.

We then calculated the risk score and evaluated the previ-
ously described static checks as explained above. For better
readability, the results are split in three different tables. Ta-
ble 7 shows the results of the global checks. Table 8 then
shows the results regarding the Custom Actions per pack-
age. The numbers in the cells indicate the number of Cus-



Product Version Filename
7zip 9.20 64 Bit 7z920-x64.msi
Apache Webserver 2.2.22 httpd-2.2.22-win32-x86-openssl-0.9.8t.msi
Autopsy Forensics Tool 3.0.1 autopsy-3.0.1.msi
Google Chrome 23.0.1271.97 GoogleChrome Standalone Enterprise.msi
LibreOffice 3.6.4 LibreOffice-LibO 3.6.4 Win x86 install multi.msi
MsiVal2 Tool (MS Windows SDK) MsiVal2.msi
Orca msi Editor (MS Windows SDK) Orca.msi
Skype 6.0.126 SkypeSetup.msi
TortoiseSVN SVN 1.7.9.23248 TortoiseSVN.msi

Table 6: msi Packages used for Risk Analysis

tom Actions found in the package with system privileges as
well as user privileges. The calculated risk metric for each
package is shown in the last column.

S
ig
n
a
tu

re

R
e
a
d
-o
n
ly

D
is
a
b
le

E
le
v
a
ti
o
n

A
d
m
in

Im
a
g
e

C
o
m
p
re

ss
e
d

M
e
d
ia

P
e
r-
U
se
r
In

st
a
ll
a
ti
o
n

7zip % % % % ! !

Apache % % % % % !

Autopsy % ! % % ! !

Chrome ! % % % ! %

LibreOffice ! ! % % % %

MsiVal2 % % % % ! !

Orca % % % % ! %

Skype ! % % % ! %

TortoiseSVN ! % % % ! %

Table 7: Results of Package Global Checks

5.3 Discussion of Results

Table 7 with the results of the package-wide checks shows
that only four out of the nine analyzed packages contain
a signature. This is already very prominent indicator for
a lack of msi security awareness among the vendors. An
impression that gets even stronger when noticing that
almost none of the packages use write protection during
the installation. Without that protection it is possible to
manipulate the package during the installation process,
for instance by Custom Actions. This can be used to
implement non-obvious setup behavior, which cannot
be easily analyzed in general. Another bad practice is
that none of the packages disables elevation, not even
those which obviously do not need it for any Custom
Actions. If elevation is not needed it should be disabled
globally. Otherwise it could be exploited by attackers who
maliciously manipulate Custom Action code to gain system
wide access. A positive observation is, that only two of the

packages use external media cabinets. All others have the
cabinets embedded in the msi file directly, as described in
[4]. This is preferable because only that single msi file has
to be protected against manipulation, for instance by using
file system access control or checksums.

Table 8 with the results of the checks for elevated Custom
Actions shows an alarming picture. Only the products Msi-
Val2, Orca and 7zip show a good example of msi authoring
since they completely abandon Custom Actions that exe-
cute code. Like already mentioned, elevated Custom Ac-
tions can run with system privileges and are therefore able
to do any possible modifications of the system. Custom
Actions should only be used if there is absolutely no other
way to perform the desired installation actions with Win-
dows Installer standard methods. And if Custom Actions
need to be used, then they should be running with user priv-
ileges. But the tested packages show a different picture. A
very bad example is from our set the installer of Google
Chrome. After deeper analysis of the package it appears
that it does not use any of the standard Windows Installer
functionality, like copying files onto the system. This is in-
dicated by the fact that the package contains no file entries
or any other information in the msi tables. There is only
one big elevated Custom Action which seems to execute a
proprietary installer. In this case Windows Installer is only
used as a vehicle to get the proprietary installer to run with
system privileges. This is considered bad practice, as it is
unknown what that elevated Custom Action will do and
should be considered a risk from the security point-of-view.
User privilege Custom Actions are considered to be less dan-
gerous than their elevated pendants, and can be seen to be
by far less popular.

6 Discussion

Our file fuzzer showed that during installation the signature
is only tested against a list of trusted software issuers,
but there is no verification of the integrity of the package.
This is troublesome since an adversary who is able to
modify a msi may be able to piggyback an additional
malicious payload. The majority of errors for the two
msi files fuzzed were 1603 and 1620, meaning a fatal
error occured during installation and that the package
could not be opened. Most interestingly, we were able to
create packages that could be installed without error, but



E
m
b
e
d
d
e
d

D
L
L

F
il
e
E
x
e
c
u
ti
o
n

C
o
m
m
a
n
d

P
ro

p
e
rt
y

E
m
b
e
d
d
e
d

D
L
L

F
il
e
E
x
e
c
u
ti
o
n

C
o
m
m
a
n
d

P
ro

p
e
rt
y

C
o
n
tr
o
lE

v
e
n
t

R
is
k
S
c
o
re

System Privilege User Privilege
7zip - - - - - - - - - 9
Apache 2 6 - 3 1 - - - 1 19
Autopsy 4 - - 5 - - - 5 2 10
Chrome 2 - 1 10 - - - - - 23
LibreOffice 26 - - 10 - - - 3 7 12
MsiVal2 - - - 1 - - - - - 9
Orca - - - 4 - - - - - 10
Skype 17 - - 21 - - - - 2 11
TortoiseSVN 1 - - 6 - - - 1 2 11

Table 8: Results of Custom Action Checks and Risk Score

not removed afterwards. This is especially dangerous for
environments where software is automatically installed on
a large number of clients, since the removal of potentially
malicious software has to be done by hand.

Overall, the results of our experiments showed that
developers as well as users and anti-virus solutions are not
fully aware of the possibilities and risks of msi files. We
showed in the first experiment that most conventional AV
products fail to detect malware when it is packed inside
of an msi file, whereas the same products could properly
detect the virus when the malware binary itself is scanned.
This strongly indicates that the initial hypothesis is correct,
i.e. that AV scanners have a poor detection rate on files
inside of msi files. That poor detection may come from the
packing and fragmenting that is applied to the malware
when they are stored inside the msi package. Most scanners
do not seem to unpack the package contents and therefore
often fail to detect contained malware. Another aspect of
this experiment was to get better information about how
critical an infected file inside an msi might be and adding
contextual information of the msi file during analysis by
considering the actual usage of the infected content and
execution privileges. It would be wrong to speak about
avoiding false positives here. Even infected content, which
is not used by the msi package in an obvious way, could
be triggered in a hidden fashion. Therefore every infection
must be taken seriously. Still, additional information as
provided by the script can serve as a starting point for
further examination of infected msi files. The experiment
showed that it is possible to gain such information by
using our analysis methodology and implementation as
described. The accuracy of the results from the evalua-
tion was very high and the gained information very detailed.

The last experiment showed that it is possible to gain
information about the potential risk arising from msi pack-
ages by statically analyzing them. The analysis tries to
find the maximum impact an msi package can have on a

system by looking at used Custom Actions, privileges and
other characteristics. A test with some popular real-world
msi packages showed that software vendors typically do not
pay enough attention to their installers especially when it
comes to clean and defensive authoring of the msi pack-
ages. Many Custom Actions and usage of unnecessary priv-
ileges combined with abandonment of digital signatures as
documented in [8] make msi packages an ideal vehicle for
malware. Companies will have to secure their software li-
brary consisting of msi packages on a file server by external
means because the packages themselves are mostly insecure
by design. Such packages, which are then automatically
deployed to thousands of clients and servers within a com-
pany, must be an appealing target for malware authors and
other malicious parties. When putting all those findings
together, a concerning picture of msi security is drawn. Re-
lated papers [1, 15, 14] have shown that installer systems
are security-critical and that vendors should put more effort
into creating secure packages.

6.1 Future Work

For future work we plan to increase the sample size and eval-
uate our risk metric with a large set of freely available msi
files. Even though our sample can be at the most considered
as only exemplarily, many software vendors distribute their
software as msi files. Furthermore we would like to deeply
analyze available malware which is distributed or abusing
msi files in the wild.

7 Conclusion

Within this paper we analyzed the security aspects of msi
packages for Windows Installer with respect to malware de-
tection as well as their defensive behaviour. We showed that
while Windows Installer itself offers important baseline se-
curity functions and mechanisms, they are not commonly
used for software which is available online. This is also true
for very large software companies. On the other hand, most



anti-virus scanners are not ready for msi, as they often fail
to detect malware embedded in msi files, while also ignor-
ing corner cases where the malware is not executed during
the installation of the package. Our results indicate that
software packaged in msi files can be an attractive target of
and infection vector for malicious software.

Acknowledgements

This work was funded by COMET K1, FFG - Austrian
Research Promotion Agency.

References

[1] J. Cappos, J. Samuel, S. Baker, and J. Hartman. A
look in the mirror: Attacks on package managers. In
Proceedings of the 15th ACM conference on Computer
and communications security, pages 565–574. ACM,
2008.

[2] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wag-
ner. Android permissions demystified. In Proceedings
of the 18th ACM conference on Computer and commu-
nications security, pages 627–638. ACM, 2011.

[3] W. Fu, J. Pang, R. Zhao, Y. Zhang, and B. Wei.
Static detection of api-calling behavior from malicious
binary executables. In 2008 International Conference
on Computer and Electrical Engineering, pages 388–
392. IEEE, 2008.

[4] T. Jaffri and K. Karnawat. Efficient delivery of soft-
ware updates using advanced compression techniques.
In Proceedings of the 22nd IEEE International Confer-
ence on Software Maintenance (ICSM’06). IEEE, 2006.

[5] R. Johnson, Z. Wang, and C. G. A. Stavrou. Analy-
sis of android applications permissions. In 2012 IEEE
Sixth International Conference on Software Security
and Reliability Companion, pages 45–46. IEEE, 2012.

[6] A. Kerl. Inside Windows Installer 4.5. Microsoft Press,
2008.

[7] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: Stati-
cally vetting android apps for component hijacking vul-
nerabilities. In Proceedings of the 7th ACM Symposium
on Information, Computer and Communications Secu-
rity, pages 329–240. ACM, 2012.

[8] Microsoft. Microsoft Developer Network – Introduc-
tion to Code Signing. http://msdn.microsoft.com/

en-us/library/ie/ms537361.aspx, retrieved 2013-
01-06.

[9] Microsoft. Microsoft Developer Network – Windows
Installer Documentation. http://msdn.microsoft.

com/library/cc185688(VS.85).aspx, retrieved
2012-07-22.

[10] Microsoft. Microsoft Knowledgebase – How the Sys-
tem account is used in Windows. http://support.

microsoft.com/kb/120929, retrieved 2013-01-05.

[11] S. Mody, I. Muttik, and P. Ferrie. Standards and
policies on packer use. In Virus Bulletin Conference
September 2010, pages 372–280. Virus Bulletin Ltd,
2010.

[12] M. Najmi, A. Zabidi, M. A. Maarof, and A. Zainal.
Challenges in high accuracy of malware detection. In
2012 IEEE Control and System Graduate Research
Colloquium (ICSGRC 2012), pages 123–125. IEEE,
2012.

[13] D. Rentz. Microsoft Compound Document File Format.
OpenOffice.org, 2007.

[14] D. D. Ruscio, P. Pelliccione, A. Pierantonio, and S. Za-
cchiroli. Towards maintainer script modernization in
foss distributions. In International Workshop on Open
Component Ecosystems 2009 (IWOCE 2009), pages
11–20. ACM, 2009.

[15] J. Samuel, N. Mathewson, J. Cappos, and R. Dingle-
dine. Survivable key compromise in software update
systems. In Proceedings of the 17th ACM conference
on Computer and communications security, pages 61–
72. ACM, 2010.

[16] A. Shabtai, Y. Fledel, and Y. Elovici. Automated static
code analysis for classifying android applications using
machine learning. In 2010 International Conference on
Computational Intelligence and Security, pages 329–
333. IEEE, 2010.

[17] H. Vegge, F. M. Halvorsen, R. W. Nergard, M. G.
Jaatun, and J. Jensen. Where only fools dare to tread:
An empirical study on the prevalence of zero-day mal-
ware. In 2009 Fourth International Conference on In-
ternet Monitoring and Protection, pages 66–71. IEEE,
2009.

[18] S. Wu. Observations and lessons learned from point-
in-time cleaning against real-time protection. In Virus
Bulletin Conference September 2010, pages 165–170.
Virus Bulletin Ltd, 2010.

http://msdn.microsoft.com/en-us/library/ie/ms537361.aspx
http://msdn.microsoft.com/en-us/library/ie/ms537361.aspx
http://msdn.microsoft.com/library/cc185688(VS.85).aspx
http://msdn.microsoft.com/library/cc185688(VS.85).aspx
http://support.microsoft.com/kb/120929
http://support.microsoft.com/kb/120929

	Introduction
	Background
	Related Work

	Fuzzing MSI Packages
	msi Fuzzer
	Conducted Tests
	Discussion of Results

	Malware in MSI
	msi Files Extractor
	Conducted Tests
	Discussion of the Results

	Detailed MSI Package Analysis
	Design and Risk Metric
	Conducted Tests
	Discussion of Results

	Discussion
	Future Work

	Conclusion

