
Using the Structure of B+-Trees for Enhancing Logging
Mechanisms of Databases

Peter Kieseberg Sebastian Schrittwieser Lorcan Morgan

Martin Mulazzani Markus Huber Edgar Weippl

SBA Research
Vienna, Austria

[1stletterfirstname][lastname]@sba-research.org

ABSTRACT
Today’s database management systems implement sophis-
ticated access control mechanisms to prevent unauthorized
access and modifications. This is, as an example, an im-
portant basic requirement for SOX (Sarbanes–Oxley Act)
compliance, whereby every past transaction has to be trace-
able at any time. However, malicious database administra-
tors may still be able to bypass the security mechanisms to
make hidden modifications to the database.

In this paper we define a novel signature of a B+-Tree, a
widely-used storage structure in database management sys-
tems, and propose its utilization for supporting the logging
in databases. This additional logging mechanism is espe-
cially useful in combination with forensic techniques that di-
rectly target the underlying tree-structure of an index. The
applicability of the approach is demonstrated by proposing
techniques for applying this signature in the context of dig-
ital forensics on B+-Trees.

Categories and Subject Descriptors
H.2.0 [Database Management]: Security, integrity, and
protection; E.1 [Data Structures]: Trees

General Terms
Security, Theory

Keywords
database forensics, b+ tree, database log

1. INTRODUCTION
B+-Trees are widely used in applications that have to

handle large amounts of data such as database indexes or
filesystems. Typically, database forensics is largely focused

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS iiWAS2011, 5-7 December, 2011, Ho Chi Minh City, Vietnam.
Copyright 2011 ACM Copyright 2011 ACM 978-1-4503-0784-0/11/12
...$10.00.

on extracting information from log files and checking data
files for consistency (e.g.[1]). For example, in a recent work
Frühwirt et al. [2] described the layout of the storage files
used by InnoDB. Concerning filesystems, there have been
several approaches for forensics on the file system layer ([3,
4, 5, 6]), still, these did not utilize the structure of the under-
lying B+-Tree. The only work known to us which describes
reconstruction of the B-Trees of filesystems in order to re-
cover deleted files is by Koruga et al. [7].

In a previous paper [8] we proposed a method for utilizing
intrinsic attributes of special tree structures of database in-
dexes for forensic purposes. In the subsequent research, the
question arose, how this approach could be enhanced, espe-
cially since it heavily relies on the existence of exact earlier
versions of the B+-Tree. In order to provide for these, we
introduce the signature of a B+-Tree which can be used for
efficiently storing the structure of a B+-Tree and thus can
be utilized as a basis for carrying out the forensic approach
denoted in [8] and [9], as well as for direct forensic analysis.
Our main contributions in this paper are the novel concept of
a tree signature for B+-Trees that dramatically enhances the
significance of forensic methods on the tree structure level,
as well as two possible applications for enhancing database
forensics on B+-Trees based on this signature.

2. BACKGROUND - DATABASE FORENSICS
USING B+-TREES

In our previous work [8] we proposed using the structure
of B+-Trees in order to detect manipulations of data en-
tries by a malicious administrator. We outlined how to use
the reconstruction of logged statements in the general case
of arbitrary issued statements. Still, the approach lacked
some feasibility in cases where an initial B+-Tree was miss-
ing. Therefore the work focused on tables with reduced
instruction-sets, e.g. INSERT-statements only (or the dual
case, reduced to DELETE-statements only) together with
a strictly ascending (or descending) index. As a result we
could show that the late insertion of additional records can
be detected in certain cases.

This approach is reasonable for audit-tables, e.g. in large
(and often complex) ticketing systems such as those used in
telecommunication companies for billing and interconnec-
tion. In these instances, data arrives from switches (e.g.
MSC, SMSC or Internet Gateways) and the processing of

every record needs to be tracked in order to establish SOX-
conformity (Sarabanes Oxley Act). Later inserts of addi-
tional tickets must not be possible in such systems, as well
as in the underlying reference tables.

Concerning the general case, the main issue lies in the
availability of a state prior to the manipulation of the tree
in order to generate a comparable tree. This reduces the
value of the approach since possibly large amounts of data
must be stored for each intermediate tree. This is where
our novel approach of tree signatures comes into play: By
defining the signature of a B+-Tree, we are able to efficiently
store the actual structure of a B+-Tree separately from the
data. Changes in the data section can be retrieved by utiliz-
ing the transaction logs. Effectively, the use of our signature
allows us to see INSERT-statements as bijective operations
with respect to the underlying B+-Tree. Thus we are able
to recalculate each single intermediate version of a tree eas-
ily by simple knowledge of the transactions applied to the
database and the structural information in the signature log.

3. B+-TREE-SIGNATURE FOR LOGGING

3.1 Definition
We start by defining the signature of B+-Trees, since this

is the prevalent data structure for database indices used in
most modern relational database systems. Since the signa-
ture is only concerned with structure, we can easily adapt
the definition to be suitable for B-Trees and, as a starting
point for future research, other balanced data structures.
First, we define the leaf signature.

Definition Let Li, i = 1 . . . k be all leaf nodes of a B+-Tree
B. Then we define the k-tuple (|L1|, . . . , |Lk|), where |Li| is
the number of elements in node Li, as the leaf signature of
B.

The leaf signature already provides some valuable insights
on the distribution of the data and could be used for digital
forensics. Still, it is not sufficient for a unique description of
the tree, since even with the (needed) knowledge of the data,
several different trees possessing the same leaf signature (and
thus the same partitioning of the data into leaf nodes) can
be constructed. See Figure 1 for an example.

Figure 1: Two different B+-Trees with the same leaf
signature

Definition Let Ci,j be the jth node on the ith level of
the tree, where nodes are counted in ascending order of the
elements contained, and where i = 1 denotes the level of the
root.

Let h be the height of the tree.
Let Di be the level signature, such that Di = (|Ci,1|, . . .)

for some i. Thus, Di is the tuple containing the size of the
nodes on the i-th level.

Let S be the tree signature, such that S = (D1, D2, . . . , Dh).
Thus, the tree signature is the tuple containing the level sig-
natures of each level of the tree.

Using the definition above we will now prove that the in-
formation contained in the signature is sufficient for an ex-
haustive description of a B+-Tree.

Corollary 3.1. The structure of a B+-Tree is well-defined
by its signature.

Proof. For our proof, we assume a non-empty tree with
a valid tree signature. Let us consider D1, the root level
signature, which will always have the form (x). We know
that the root of any valid tree will have x + 1 child nodes
and, since we have assumed a valid tree signature, D2 must
therefore represent these x + 1 children. Since all elements
inside a node are sorted in ascending order (by the definition
of a tree), there is exactly one valid way of matching the
elements of D2 onto the children of the root of the tree.

Each child node can then be considered as the root of a
subtree. By applying the same principle we can conclude
that for each unique tree signature there is exactly one cor-
responding structure. Thus, the structure of a tree is well-
defined by its signature.

Example Let B be a B+-Tree of order 4 containing the
number 1 . . . 16 with the following signature: S = ((1),
(2, 2), (3, 3, 2, 3, 3, 2)). Then the resulting B+-Tree can be
seen in Figure 2.

Figure 2: B+-Tree of order 4 with S =
((1), (2, 2), (3, 3, 2, 3, 3, 2))

3.2 Constructing trees from signatures
In this section we outline an algorithm for constructing a
B+-Tree from the corresponding set of (sorted) index data
together with the signature.

1. The last tuple of the signature is retrieved and the
index data is partitioned accordingly, i.e. it is di-
vided into blocks with the length derived from the
last signature-tuple respectively. The resulting groups
form the leaves of the B+-Tree.

2. The leaves are grouped according to the signature of
the level above, i.e. by the penultimate tuple of the
signature.

3. Step 2 is applied iteratively on each newly constructed
level until we reach the root node (the first entry in
the signature).

4. The final tree is constructed by promoting the correct
elements into the inner nodes and the root node. This
step is well defined by the B+-Tree-definition.

In the following, we give a short example in order to illus-
trate the algorithm.

Example Let B be the B+-Tree of order b = 4 as shown
in Figure 2 together with the signature S = {(1), (2, 2),
(3, 3, 2, 3, 3, 2)}.
In the first step of the algorithm we partition the data ac-
cording to the last tuple of the signature in order to generate
the leafs of the tree. The elements 1 . . . 16 partitioned by
(3, 3, 2, 3, 3, 2) thus form the leaves (1, 2, 3), (4, 5, 6), (7, 8),
(9, 10, 11), (12, 13, 14), (15, 16).
Now, each leaf node is an element in the next partition-
ing, i.e. the leaf nodes are grouped according to the sig-
nature of the next level (2, 2) thus resulting in two inner
nodes with three child nodes each: ((1, 2, 3), (4, 5, 6), (7, 8))
and ((9, 10, 11), (12, 13, 14), (15, 16)). Combining these two
subtrees with the root node yields to the final B+-Tree.

The complexity of the algorithm can be calculated in the
following way: Since we assume that the n leaf-elements
are already sorted in ascending order, partitioning can be
done very fast (n operations). This has to be repeated for
each level, where the maximum number of elements on each
level can be estimated with ni ≤ log b

2
+1 ni+1 (upper bound),

thus resulting in the following formula for the whole tree (l
denotes the number of levels of the B+-Tree.):

1∑
i=l

Ai, with Ai = log b
2
+1 Ai+1, Al = n

4. APPLICATION

4.1 Additional log file
The signature log provides an additional log that can be

used in order to detect manipulations of a database table.
Since many operations result in changes of the underlying
B+-Tree-structure, these operations will also affect the sig-
nature of the B+-Tree.

We also need to be aware of a malicious administrator who
may be able to manipulate this log during forensic analysis.
We now want to analyze the significance and robustness of
this additional log in more detail.

In case the adversary is not able to tamper with the signa-
ture log (i.e. she does not hold the privileges or the ability to
rewrite log files), the following information can be derived:

1. The structure of the current tree must correspond to
the signature in the signature log.

2. The number of logged signatures must be the same as
operations in the transaction log, so we can use the sig-
nature log to cross-check for any obvious manipulation
in those transaction-logs.

Tampering with the signature log is far from trivial, since:

• The adversary must be able to read out the structure
of the B+-Tree by herself.

• Insert very subtle changes, since even small changes in
the insert order of elements can have a great impact
on the structure of the resulting trees - especially when
there are more complex transactions following the one
that got changed [8].

• In the end, all these changes must lead to a tree that
has the same structure like the one that is observed at
the moment.

As was already discussed in Section 2, the structure of
the underlying B+-Tree can be used for forensic analysis. In
particular ordered insert statements can be revealing.

4.2 Reconstructing old Tree-versions
As shown in our previous work, just logging the trans-

actions issued against a database is not enough to preserve
a log of all previous structures of the underlying B+-Tree,
since in general the operation of inserting an element into a
B+-Tree is not bijective (the inverse operation is not injec-
tive). Moreover, when dealing with multiple INSERT- and
DELETE-operations, it is usually impossible to reconstruct
the former tree.

Example The example in Figure 3 illustrates how adding
the same element to two B+-Trees A and A′ with different
structures generates the same tree B.

Figure 3: B+-Tree resulting from two different B+-
Trees

Since the signature of the tree (together with its charac-
terization by its order) identifies the structure, the signature
log together with the tree and a log of all operations on the
tree can be used to retrieve any intermediate state, since:

1. The partitioning of the nodes (and thus the structure)
of the B+-Tree is denoted in the signature,

2. The data inside the B+-Tree can be retrieved by com-
bining the current tree with the information written in
the change logs for every intermediate state,

3. The combination of this information (together with
the basic characterization of the tree itself) defines the
whole tree.

Thus, the original tree can be restored with a combination
of the data (taken from other log files) and the signature log.
Again, we can apply the algorithm described in Section 3.2.

1. Be E the set of all elements in the current B+-Tree.

2. Choose a point in time t, for which the tree should be
reconstructed.

3. Extract D(t) and I(t) from the transaction logs, where
D(t) is the set of all deleted elements and I(t) the set
of inserted elements since t.

4. Join E with D and subtract I in order to calculate
E(t), the set of all elements at point in time t: E(t) =
(E ∪D(t)) \ I(t).

5. Use the tree signature S(t) at point in time t and the
algorithm proposed in Section 3.2 to reconstruct the
old state of the B+-Tree.

Obviously this approach is also invulnerable against reorga-
nizations of the B+-Tree due to performance optimization
strategies, since these operations only change the underly-
ing structure of the B+-Tree, which is already stored in the
signature log.

One additional prerequisite must be fulfilled though:
UPDATE-statements must be logged as a combination of
the respective INSERT- and DELETE-statements.

Example Let E = {1, 2, 3, 4, 5, 6, 7, 8} be the elements of
a B+-Tree of order 4 that was constructed from a previous
B+-Tree with signature S(t) = ((2), (2, 2, 3)) by inserting
the elements 2 and 4, as well as deleting element 9.
Thus we can construct the old tree with E(t) = ((E∪D(t))\
I(t) = {1, 3, 5, 6, 7, 8, 9} where D(t) = {9} and I(t) = {2, 4}
and reconstruct the B+-Tree with respect to the signature
S(t). The results can be seen in Figure 4.

Figure 4: Reconstructed B+-Tree

In case of differences between a reconstructed tree and an
old backup, manipulations can be detected.

4.3 Limitations
One limitation of this approach lies in the fact that the

technique must be implemented inside the DBMS, i.e. it is
possible to do this via external tools, but to us this seems
a rather costly alternative concerning performance. So the
vendor of the DBMS must be convinced to change the soft-
ware, which is rather unlikely concerning the big players in
this market.

Another limitation stems from the issue that the bijec-
tivity of the transaction can only be assured when every
change in the underlying structure is logged. This will re-
sult in some additional space needed, as well as an additional
logging operation after each transaction. Since every log en-
try covers the structure of the whole tree, this could result
in mitigation strategies for this problem, including:

• In case a transaction only affects a sub-tree, the logging-
logic could reuse the last entry of the signature log
and directly alter the part of the signature that is con-
cerned with this sub tree.

• The logging could rely on some external tool that cal-
culates intermediate steps out of two tree signatures
(extracted the usual way) and the transaction log.

The most important drawback, however, lies in the fact
that an almighty administrator is, at least in theory, able to
completely fake the log. Even though, faking the signature
log should be drastically more complicated compared to a
transaction-log, this possible threat has to be taken into
consideration.

5. CONCLUSION
In the course of this paper we proposed the signature of a
B+-Tree, a set of tuples describing the structure of an index
and a logging mechanism for databases based on this signa-
ture. We showed that this mechanism is useful for forensic
analysis applied to the underlying B+-Tree-structure of an
index. With this signature mechanism, database transac-
tions become bijective with respect to the structure of the
actual index tree, thus allowing for a multitude of forensic
approaches. Additionally we believe that this mechanism
can be very useful in the case of defining a forensic-aware
database, since even in case of index reorganizations it is
possible to successfully reconstruct old versions.

6. ACKNOWLEDGEMENTS
This work has been supported by the Austrian Research

Promotion Agency under grant 824709 (Kiras).

7. REFERENCES
[1] K. Pavlou and R. Snodgrass, “Forensic analysis of

database tampering,” ACM Transactions on Database
Systems (TODS), vol. 33, no. 4, pp. 1–47, 2008.

[2] P. Fruehwirt, M. Huber, M. Mulazzani, and E. Weippl,
“InnoDB Database Forensics,” in Advanced Information
Networking and Applications (AINA), 2010 24th IEEE
International Conference on. IEEE, 2010, pp.
1028–1036.

[3] B. Carrier, File system forensic analysis.
Addison-Wesley Professional, 2005.

[4] C. Swenson, R. Phillips, and S. Shenoi, “File System
Journal Forensics,” Advances in Digital Forensics III,
pp. 231–244, 2007.

[5] K. Eckstein, “Forensics for advanced UNIX file
systems,” in Information Assurance Workshop, 2004.
Proceedings from the Fifth Annual IEEE SMC. IEEE,
2005, pp. 377–385.

[6] K. Eckstein and M. Jahnke, “Data hiding in journaling
file systems,” in Digital Forensic Research Workshop.
Citeseer, 2005.

[7] P. Koruga and M. Bača, “Analysis of B-tree data
structure and its usage in computer forensics,” in
Central European Conference on Information and
Intelligent Systems, 2010.

[8] P. Kieseberg, S. Schrittwieser, M. Mulazzani, M. Huber,
and E. Weippl, “Trees cannot lie: Using data structures
for forensics purposes,” in European Intelligence and
Security Informatics Conference (EISIC 2011), 9 2011.

[9] M. Mulazzani and E. Weippl, “Aktuelle
Herausforderungen in der Datenbankforensik.”

	Introduction
	Background - Database forensics using B+-Trees
	B+-Tree-signature for logging
	Definition
	Constructing trees from signatures

	Application
	Additional log file
	Reconstructing old Tree-versions
	Limitations

	Conclusion
	Acknowledgements
	References

