
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 1 3e2 6
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/cose
Covert Computation d Hiding code in code
through compile-time obfuscation5
Sebastian Schrittwieser a,*, Stefan Katzenbeisser b, Peter Kieseberg c,
Markus Huber c, Manuel Leithner c, Martin Mulazzani c, Edgar Weippl c

aVienna University of Technology, Favoritenstraße 9e11/188, 1040 Vienna, Austria
b Security Engineering Group, Darmstadt University of Technology, Hochschulstraße 10, 64289 Darmstadt, Germany
cSBA Research, Favoritenstraße 16, 1040 Vienna, Austria
a r t i c l e i n f o

Article history:

Received 29 July 2013

Received in revised form

25 September 2013

Accepted 30 December 2013

Keywords:

Code obfuscation

Side effect

Code steganography

Semantic-aware malware detection

Compile-time obfuscation
5 This paper is an extended version of the
* Corresponding author. Tel.: þ43 1 5053688.
E-mail addresses: sebastian.schrittwiese

sba-research.org (P. Kieseberg), mhuber@sb
research.org (M. Mulazzani), eweippl@sba-re
0167-4048/$ e see front matter ª 2014 Elsev
http://dx.doi.org/10.1016/j.cose.2013.12.006
a b s t r a c t

Recently, the concept of semantic-aware malware detection has been proposed in the

literature. Instead of relying on a syntactic analysis (i.e., comparison of a program to pre-

generated signatures of malware samples), semantic-aware malware detection tries to

model the effects a malware sample has on the machine. Thus, it does not depend on a

specific syntactic implementation. For this purpose a model of the underlying machine is

used. While it is possible to construct more and more precise models of hardware archi-

tectures, we show that there are ways to implement hidden functionality based on side

effects in the microprocessor that are difficult to cover with a model. In this paper we give a

comprehensive analysis of side effects in the x86 architecture and describe an imple-

mentation concept based on the idea of compile-time obfuscation, where obfuscating

transformations are applied to the code at compile time. Finally, we provide an evaluation

based on a prototype implementation to show the practicability of our approach and es-

timate complexity and space overhead using actual malware samples.

ª 2014 Elsevier Ltd. All rights reserved.
1. Introduction

During the last decade, malware detection has become a

multi-billion dollar business and an important area in aca-

demic research alike. Static analysis, still the predominant

technique for client based malware detection (commonly

known as virus scanners), has not changed much during the

last years. Current virus scanners almost entirely rely on

signature based detection mechanisms (Christodorescu and

Jha, 2004; Griffin et al., 2009). Malware, on the other side, has
conference paper (Schrit

r@tuwien.ac.at (S. Schritt
a-research.org (M. Hube
search.org (E. Weippl).
ier Ltd. All rights reserved
evolved significantly throughout the years and often uses

sophisticated code obfuscation techniques in order to make

detection more difficult. Encryption, polymorphism as well as

metamorphism are commonly deployed to defeat signature

based detection mechanisms by hiding the malicious func-

tionality in data sections of the binary that look different for

each instance of the malware.

To increase detection rates of obfuscated malware, new

paradigms of malware analysis have been proposed.

Semantic-aware malware detection, which was first intro-

duced by Christodorescu et al. (2005), aims at solving some of
twieser et al., 2013).

wieser), skatzenbeisser@acm.org (S. Katzenbeisser), pkieseberg@
r), mleithner@sba-research.org (M. Leithner), mmulazzani@sba-

.

mailto:sebastian.schrittwieser@tuwien.ac.at
mailto:skatzenbeisser@acm.org
mailto:pkieseberg@sba-research.org
mailto:pkieseberg@sba-research.org
mailto:mhuber@sba-research.org
mailto:mleithner@sba-research.org
mailto:mmulazzani@sba-research.org
mailto:mmulazzani@sba-research.org
mailto:eweippl@sba-research.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2013.12.006&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 1 3e2 614
the limitations of signature-based detection strategies by

using so-called templates which define malicious behavior

independently of its actual implementation. This approach

makes the malware detection system more resistant against

some types of obfuscating transformations such as garbage

insertion (Collberg et al., 1997) and equivalent instruction

replacement (De Sutter et al., 2009). However, amajor limitation

of this approach is its dependency on an accuratemodel of the

underlying hardware (i.e., the microprocessor). In order to be

able to evaluate the maliciousness of a sequence of processor

instructions this model has to be detailed enough to map all

effects on the hardware’s state.

In this paper we show that exactly this fundamental pre-

requisite for semantic-aware malware detection is difficult to

achieve.We introduce a concept called COVERT COMPUTATION that

is based on the idea of implementing program functionality in

side effects of the microprocessor that are not covered by a

simple machine model. In contrast to packer-based obfusca-

tion which hides code in data sections that cannot be evalu-

ated in static analysis scenarios, we go one important step

further in this paper by hiding (malicious) code in real code.

The main advantage of this approach over previous ones is

that hidden functionality is not identifiable for syntactic

malware detectors and extremely difficult to detect with se-

mantic analysis techniques. In detail, the main contributions

of this paper are:

� We introduce a novel approach for code obfuscation called

COVERT COMPUTATION, based upon side effects in today’s

microprocessor architectures. It hides (potentially mali-

cious) code in legitimate code.

� We provide a comprehensive collection of side effects for

Intel’s x86 architecture and show how they can be used to

hide (potentially) malicious functionality in executables.

� We describe a proof-of-concept implementation of our

obfuscation technique that is performed at compile-time.

� We finally evaluate the security of our obfuscation

approach against semantic-aware malware detection,

measure the performance based on our prototype and

provide a theoretical discussion on the effects of this

obfuscation technique on real-life malware samples.

The remainder of the paper is organized as follows: In

Section 2 we discuss related work in the area of malware

obfuscation as well as malware detection. In Section 3 we

introduce side effects of Intel’s x86 instruction set and

describe how they can be used to hide malicious functionality

inside harmless looking code. In Section 4 we propose our

concept of compile-time obfuscation and present a prototype

implementation based on the LLVM compiler infrastructure.

An extensive evaluation of our concept is described in Section

6. Finally, we summarize the main contributions of our paper

and draw conclusions in Section 7.
2. Related work

Today’s malware obfuscation approaches often follow the

simple concept of hiding malicious code by packing or

encrypting it as data that cannot be interpreted by the
machine (Nachenberg, 1997). At runtime, an unpacking

routine is used to transform the data block back intomachine-

interpretable code. Polymorphism (Song et al., 2007) and

metamorphism (O’Kane et al., 2011) can be seen as improve-

ments to the packer concept aiming at making automated

malware detection more difficult. Another variant of packing

was introduced by Wu et al. (2010). Their approach e called

mimimorphism e encodes the program’s code as harmless

looking code, which is not detectable with previous concepts

(such as entropy analysis) as the packed code appears to be

code itself. Resulting binaries follow an unobtrusive statistical

distribution of instructions and thus are able to trick malware

detectors that work on the syntactical layer. However, this

concept would not withstand a semantic code analysis. Even

though the packed code looks like real code, it is just a

sequence of functionally unrelated instructions without any

semantic meaning.

On the other side of the arms race the detection and

analysis of packed malware has been studied for many years.

Many approaches are based on static code analysis. Encrypted

code is identifiable based on entropy analysis as shown by

Lyda and Hamrock (2007). Bruschi et al. (2006) described an

approach for detecting self-mutating malware by matching

the inter-procedural control flow graph of software against

malware samples. The authors argue that despite its self-

mutating nature, the control flow graph of this type of mal-

ware is still characteristic enough for reliable detection.

In contrast to the detection of packer-based obfuscation,

the analysis of the actual semantics of code was proposed in

literature using different approaches. The idea of using model

checking for detectingmalicious codewas proposed by Kinder

et al. (2005). Christodorescu et al. (2005) described the concept

of semantic-aware malware detection, aiming at matching

code with predefined templates specifying malicious

behavior; matching of malicious code still works even if the

actual implementation of the malicious behavior slightly dif-

fers from the reference implementation in the template. Dalla

Preda et al. further formalized the approach of semantic-

aware malware detection in 2007 (Dalla Preda et al., 2007)

and 2008 (Dalla Preda et al., 2008). An important aspect of this

type of malware detection is that is heavily depends on the

quality of the model of the underlying hardware as the effects

of a sequence of instructions has to be matched against the

effects of a malware template. The first theoretical discussion

on the idea of forcing a detection system into incompleteness

was presented by Giacobazzi (2008). However, no practical

approach of this idea was given in the paper. Moser et al.

(2007) discussed the question whether static analysis alone

allows reliable malware detection. The authors argue that

semantic-aware detection systems are only effective against

malware that is not protected against this particular analysis

method and prove their claim with a new binary obfuscation

schema that successfully prevents malware identification

even by semantic-aware detectors. The paper concludes that

simple obfuscation techniques can reliably hide the purpose

of a program’s code, and thus clearly shows the limits of static

analysis.

Another approach against the threat of malware is to

dynamically analyze the behavior of software in order to

identify malicious routines (Willems et al., 2007). Sharif et al.

http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 1 3e2 6 15
(2008) use Windows API call monitoring for deobfuscation.

Malware detection using symbolic execution was put forth by

Crandall et al. (2005). Bayer et al. (2009) describe TTAnalyze, a

tool that records a program’s system calls and Windows API

function hooks in order to identify malicious behavior at

runtime. While this software is mainly used by malware an-

alysts to get an understanding of the malware’s functionality,

the concept was also extended to a preventive malware

detection system that uses patterns of malicious behavior

(Bayer et al., 2009), which were extracted by running malware

in a controlled environment (Kolbitsch et al., 2009). Further-

more, dynamic malware analysis (Egele et al., 2012) has

become an important concept to assist with processing mal-

ware samples on a large scale. While dynamic analysis is

helpful for clustering mutated malware binaries according to

their behavior, e.g., their system calls (Lanzi et al., 2010), this

method still requires reverse engineering of obfuscated bi-

naries in order to uncover crucial routines such as domain

generation algorithms (Weaver, 2010), obfuscated encryption

methods, or cryptographic keys (Chow et al., 2003).
3. Side effects

In this sectionwe demonstrate that it is possible to implement

sensitive parts of a program’s functionality as side effects of

an innocent looking piece of software. Our approach funda-

mentally differs from simple instruction replacements, which

can be detected with semantic-aware malware detection

systems. In contrast to simply replacing instructions with

equivalent ones (e.g., MOV EAX, 0 with XOR EAX, EAX) our

concept is much more subtle by moving the actual function-

ality as well as the data storage for intermediate results into

side effects of instructions that are per se not equivalent to the

original ones. In this paper, a comprehensive analysis of side

effects in the x86 platform is conducted (see Table 1 for a

complete list). For each side effect we explain (a) how it can be

used to hide code, (b) how input data can be stored, and (c)

where output data is put.
Table 1 e Side effects of the x86 architecture.

Hidden functionality Host instruction Side effect

Conditional jump LOOP CX/ECX

Short jump LOOP CX/ECX

MOV LOOP CX/ECX

MOVS ESI

MOVS, EMMS MMX/XMM

ADD LODS ESI

REP MOVS ESI

SUB LOOP CX/ECX

LODS ESI

REP MOVS ESI

INC LODS ESI

DEC LODS ESI

REP MOVS ESI

AND RCL/RCR Flags register

OR RCL/RCR Flags register

XOR RCL/RCR Flags register
3.1. Flags

In x86 the flags register is a 16 bit wide register that stores the

processor’s status (there exist successors with 32 as well as 64

bit width). Each bit (flag) of the register represents one status

information. For instance, the carry flag is set to 1 if an

arithmetic carry is generated by an arithmetic or bitwise in-

struction. Usually, these bits are used to store status infor-

mation that is, in the following, evaluated in conditional

control flow jumps. However, in the concept of COVERT COMPU-

TATION we use the flags register to store input data for calcu-

lations that are entirely performed with the help of

conditional control flow jumps.

Fig. 1 explains the concept based on a bitwise logical XOR

operation. The basic idea is to map the four possible combi-

nations of input values (00/01/10/11) by implementing two

conditional jumps over the carry flag, each of it evaluating one

input value. First, one input value is stored in the carry flag.

This can be achieved by executing an instruction that sets the

carry flag according to the input value. This instruction is

followed by a conditional jump (JC). Then, the second input

value is stored in the carry flag, again followed by a condi-

tional jump. With this concept, all 4 possible output permu-

tations can be mapped. To perform a conjunction over more

than one bit, this process can be repeated. An example of an

XOR operation over 32-bit input values without using any XOR

instruction is given in Listing 1. The top part of the listing

shows the original code and below the arrow a code fragment

which implements the same functionality inside side effects

of innocent looking code is given. The code uses the RCL

(rotate through carry) instruction within a loop that runs 32

times. In each iteration one bit of the first input value (stored

in EAX) is moved to the carry flag, followed by a conditional

jump (JC) which splits the control flow so that depending on

the input bit a different control flow path is taken. Then one

bit of the second input value (stored in EBX) is moved to the

carry flag (using the RCL instruction) and again a conditional

jump is used to split the control flow. After performing the two

conditional jumps, the program counter points to one out of

four possible locations, which represent the four possible re-

sults of the XOR operation. Depending on which location is

reached, the result is written to the carry flag with the help of

either the STC (sets the carry flag to 1) or CLC instruction (sets

the carry flag to 0). In the following iteration, this result bit is

moved to EAX when the RCL instruction is executed for the

next input bit. After 32 iterations, the final result can be found

in EAX. In general, logical operations (AND, OR, and XOR) can

be performed over the flags register without using the

respective instructions.

The side effect in this concept lies in the rotation in-

structions RCL and RCR which rotate the register’s content

though the carry flag, thus it can be used to store input data.

RCL shifts all bits towards more-significant bit positions.

Further, the content of the carry flag is moved to the LSB,

while the MSB of the register is moved to the carry flag. RCL

performs the rotation towards less-significant bit positions.

Thus, the carry flag is used to store the input values for a

logical or arithmetical operation. The result of the operation is

stored indirectly as the program counter’s position within the

http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006

Fig. 1 e XOR using the carry flag.

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 1 3e2 616
control flow graph after executing the two conditional jumps.

From there it can be copied to the flags register using dedi-

cated instructions (STC and CLC), from where it is again

moved to an output register (in our example: EAX) using the

rotation instructions.
3.2. LOOP Instruction

In x86 the LOOP instruction uses a counter register (CX/ECX)

that is decremented by one in each iteration. The loop ter-

minates if this counter register contains the value 0. Other-

wise, a jump to a location, which is specified by the operand of

the LOOP instruction as a relative offset, is taken. The value

stored in the counter register can be used in several ways to

implement hidden functionality using the LOOP instruction.

Listing 2 shows a conditional jump implemented using a LOOP

instruction. Instead of making the jump decision depending

on the zero flag (e.g., by using the TEST instruction), a side

effect of the ECX in its role as the loop counter is exploited to

archive the functionality of a conditional jump. Similarly, an

unconditional short jump can be implemented, by moving a

value unequal 1 to ECX.

Listing 3 shows a code fragment which implements the

functionality of the SUB instruction inside side effects of the

LOOP instruction. While the loop is executed, the values of
Fig. 2 e Intercepting the comp
EAX and ECX are swapped by the XCHG instruction. The ECX

register serves as the counter register for the LOOP instruction

and is decremented by one in each iteration. However, due to

the XCHG instruction, the value stored in ECX constantly

switches between the loop counter and the value of EAX. Thus

the value of EAX is actually decremented in every other iter-

ation of the loop. When the counter register ECX finally rea-

ches 0, the value of EAX was decremented by the original

value of ECX. The side effect is exploited as follows: Inter-

mediate results are stored in the loop counter ECX, which

carries out two tasks. The obvious functionality is that ECX

decrements by one each time the loop’s body gets executed.

Combining the instruction with the XCHG instruction, how-

ever, leads to the effect that also the second operand gets

decremented, thus the functionality of the SUB instruction

can be imitated. The final result is also stored in the second

operand. Note that in Listings 1 to 3 the value of ECX is

modified. If the register is used at this location, its value has to

be saved and restored.
3.3. String instructions

The MOVS, SCAS, CMPS, STOS, and LODS instructions are

intended to operate on continuous blocks of memory instead

of single bytes, words or dwords. In most cases, these
ilation process of LLVM.

http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006

Fig. 3 e Resilience against semantic-aware malware detection.

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 1 3e2 6 17
instructions utilize implicit operands instead of programmer-

defined registers. The implicit operands e if applicable for the

specific instruction e are as follows:

� ESI as a pointer to the source block of memory

� EDI as a pointer to the destination

� ECX as counter (e.g., to specify how many elements to

copy)

� AL/AX/EAX as a value for comparisons

Furthermore, the direction flag (which can be set with STD

and cleared with CLD) determines whether ESI/EDI will be

incremented or decremented after an operation. Each of the

instructionsmodifies ESI, EDI or both. TheREP prefix (aswell as

its siblings, REPZ/REPE andREPNZ/REPNE) is of further interest.

This prefix, which is only applicable to string instructions,
Fig. 4 e Performance analysis wi
behaves in much the same way as LOOP: It repeats the given

instruction ECX times. Without the REP prefix, string opera-

tions only operate on a single byte, word or dword. Before

considering possible ways to repurpose their side effects, a

short explanation of each of these instructions is given:

� MOVS moves (copies) bytes, words or dwords from the

address pointed to by ESI to the address pointed to by EDI.

� SCAS scans the address pointed to by EDI for the value of

AL/AX/EAX and sets the flags accordingly (this instruction

is usually combined with REPE or REPNE to search for the

first match or nonmatch of a given value).

� CMPS compares the value pointed to by EDI to the value at

ESI and sets the flags accordingly.

� STOS stores the value at AL/AX/EAX into the location

specified by EDI.
th aescrypt, MD5, and bzip2.

http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006

Fig. 5 e Theoretical evaluation of program (top) and complexity (bottom) overhead for four malware samples.

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 1 3e2 618
� LODS stores the value pointed to by ESI into AL/AX/EAX.

This is the only string instruction where using REP is un-

common (if used at all).

Themost obvious side effect is themodification of ESI, EDI,

and ECX. By utilizing these properties, it is trivial to emulate

ADD, SUB, INC, and DEC. Listing 4 shows a code fragment

which implements the functionality of the INC instruction

using side effects of the LODS instruction.

Note that this fragment is only applicable if the value of

EAX points to a memory location that is accessible to the
Listing 1 e XOR usin
program. Most values will work; notably, 0 will not. This

value will lead to a segmentation fault as it is not a valid

memory address. Furthermore, the code overwrites the value

in the ESI register, which has to be saved and restored if

necessary. The side effect of this code example lies in the

LODS instruction that uses the EDI as destination pointer

which gets incremented when the instruction is executed. By

swapping the destination register and ESI before and after

the LODS instruction, this code fragment actually increments

the content of the destination register, thus emulating the

INC instruction.
g the carry flag.

http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006

Listing 2 e Conditional jump with LOOP instruction.

Listing 3 e SUB with LOOP instruction.

1 This is a memory-to-memory move and therefore not a legal
instruction as such; keeping this in mind, one can actually
obfuscate moves between different registers or between registers
and memory by storing them to memory first and then using
MOVS without REP.

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 1 3e2 6 19
The functionality of ADD can be constructed in much the

same way by loading the first operand into ESI and the second

operand into ECX and executing the snippet above with the

REP prefix. Each iteration adds 4 bytes to ESI, so the value of

the repetition counter has to be set to a fourth of the value that

should be added. Note that in the example in Listing 5 the

value of EAXmust point to a valid memory location and allow

it to remain a valid memory location while iteratively

increasing it to EAXþ20. The same goes for the value of EDI.

Thus, not all input values are valid, still, most will work. DEC

and SUB can be emulated as well using the same set of in-

structions with the direction flag set (using the STD

instruction).

Listing 6 shows another code fragment which uses side

effects of a string instruction to hide arithmetic operations. In

this example, the fact that the ESI is incremented by its size

(32 bit) each time the MOVS instruction is executed, is used to

generate a hidden SUB.

Again, like in thepreviousexampleEAXmustpoint toavalid

and readable memory location as this value is read by the

MOVS instruction. Note that in Listings 4 to 6 the values of

registers ECX, ESI, and EDI are modified. If these registers are

usedat this location, their valueshave tobe savedandrestored.
The complexity of automated and manual semantic anal-

ysis can be increased further by adding the REP prefix to LODS

or dropping it for other string instructions.

For example, MOVS increments or decrements both ESI

and EDI and is otherwise equivalent to MOV [EDI],[ESI].1

Listing 7 shows an example of replacing MOV instructions

with string instructions.
3.4. Instruction set extensions

Following the increasing demand for performant multimedia

computing, CPU manufacturers have been adding new ex-

tensions to the original x86 instruction set. Starting with the

x87 FPU (Floating Point Unit), a vast number of features such

as Streaming SIMD Extensions (SSE, in its various versions up

to 4.2), MMX and Advanced Vector Extensions (AVX) are pre-

sent in current x86 CPUs. These extensions usually operate in

http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006

Listing 4 e Arithmetic operations with string instructions.

Listing 5 e Arithmetic operations (ADD) with string instructions.

2 PXOR calculates the XOR of two MMX registers or an MMX
register and memory or an immediate value.

3 XOR is still one of the more popular basic operations in
encryption employed by packers.

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 1 3e2 620
a Single Instruction, Multiple Data (SIMD) fashion, i.e., a single

instruction is applied to multiple input values. While SIMD

instructions offer little advantage outside their domain (that

is, multimedia or other vector operations), they can still be

used to make reverse engineering attempts considerably

harder. Real-life malware rarely employs these instructions,

likely for lack of knowledge and economic reasons. Given the

economic aspects of current malware, obscure features also

reduce the potential number of installations (and therefore,

profit). Due to these factors, most malware analysts and

automated semantic-aware tools will not recognize these new

instructions. One example of malware that employs MMX

instructions is W64/Sigrun, which is also known as W32/Svafa

(Ferrie, 2012). MMX, which was released in 1997, introduced

eight new 64-bit registers and a number of new instructions.

Interestingly, these registers are not new as such, but rather

the existing eight 80-bit floating point registers (the most

significant 16 bits are not used for MMX instructions, but will

be clobbered by them). Later extensions added entirely new

registers.
A comprehensive overview of all new instructions intro-

duced throughout the past 15 years is outside the scope of this

paper; however, it should be noted that a vast majority of

them can be repurposed to obfuscate data movement or

arithmetic instructions, for instance by including additional

fake data in MMX/XMM registers or constructing special data

for PXOR2 and related boolean logic instructions.3
4. Compile-time obfuscation

The concept of COVERT COMPUTATION works on a low level of

abstraction, utilizing side effects in the hardware. Therefore,

this type of code obfuscation is difficult to implement in high-

level programming languages such as C, as the specific

http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006

Listing 6 e Arithmetic operations (SUB) with string instructions.

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 1 3e2 6 21
implementation on binary level by the compiler is out of

control of the developer. During the compilation process, the

original code represented in some high-level language is

converted to various intermediate representations (e.g., Reg-

ister Transfer Language in the GCC compiler) and runs

through several optimization cycles that make the code more

efficient by, e.g., removing unnecessary instructions or con-

verting complex code into simpler code (Madou et al., 2006). It

would not be feasible to implement the obfuscation technique

in a high-level representation, because the intended effects on

the hardware would most likely get lost during the compila-

tion process. On the other hand, injecting side effects in the

binary code (binary rewriting (Smithson et al., 2010; Schwarz

et al., 2002)) is error prone and complex, particularly when

other obfuscation techniques are applied to the program in

order to make disassembling harder. We therefore propose to

apply code obfuscation at compile-time in order to benefit

from both approaches while mitigating the discussed limita-

tions. At compile-time all the required meta information (e.g.,

location information) is still present, allowing a more struc-

tured view on the code while the effects of compiler optimi-

zations are controllable as the obfuscation modifications are
Listing 7 e MOV with s
applied in the same step. Thus, we consider compile-time

obfuscation to be the only reasonable way of implementing

covert instructions.

For our approach, we modified the compilation process of

the LLVM (Low Level Virtual Machine) Compiler Infrastructure

(Lattner and Adve, 2004) to insert the covert instructions

directly into the hardware-specific assembly representation of

the code. Fig. 2 shows the compilation process of LLVM as well

as our modifications. We split this workflow into two parts: In

our modified workflow, the program’s code first runs through

all optimization steps, the linker, and the target code gener-

ator and stops after the generation of hardware-dependent

assembly code. At this point of the compilation process the

code is already optimized for the specific target hardware, yet

memory is still referenced by labels. Thus, modifications to

the code can be performedwithout the need of rewriting jump

target addresses, etc., reducing the complexity of the obfus-

cation process drastically. At this point, we apply our obfus-

cation method by first identifying functionality that can be

implemented using side effects, then removing it from the

code and finally injecting innocent looking code containing

the same functionality inside side effects. After performing
tring instructions.

http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 1 3e2 622
the obfuscating transformations, the second part simply takes

themodified assembly code and converts it into an executable

binary.

For our prototype implementation, we have written a

compiler wrapper which can be used to easily integrate the

concept of compile-time obfuscation into an existing tool-

chain (e.g., the GNU toolchain). The basic concept of the

wrapper is that command line arguments that are passed to

the wrapper are simply forwarded the actual compiler with

one exception. Each command line argument that refers to a

source code file (e.g., .c) is matched, the corresponding file is

compiled to hardware-dependent assembly code and func-

tionality is reimplemented using side effects. In our prototype

implementation we used simple regular expressions for the

identification of candidate functionality and reimplemented it

with a semantically equivalent code block that hides the

functionality in side effects. In a last step, the modified as-

sembly file is passed, together with the other command line

arguments, to the actual compiler, which finally generates the

executable.

This approach makes it possible to insert covert in-

structions at compile time by just using our compiler wrapper

instead of the actual compiler (e.g., specified in the Makefile of

a software project) without requiring major modifications of

the default toolchain. The original compiler is still used;

however, instead of source code files, it receives modified

assembly code.
5. Security analysis

In this section we discuss the effectiveness of our obfuscation

technique and evaluate its impact on performance and binary

size. We first considered assessing its resilience against

commercial malware detectors by using real malware sam-

ples that were modified to implement some of their func-

tionality in side effects. However, as pointed out by Moser

et al. (2007), this type of evaluation would be of doubtful

value. The detection engines of today’s virus scanners are

mainly signature-based, which means that modifying the bi-

nary code would most likely destroy the signature. It would

then come as no surprise to have a detection rate that was

lower than the one for the original binaries. As this effect can

be simply tracked down to the modification of the signature

and not to the concept of covert functionality in the code, it

would heavily restrict the significance of the evaluation.

Therefore, we decided to focus our evaluation on a theoretical

analysis to evaluate the resilience of our approach against

semantic-aware malware detection introduced by

Christodorescu et al. (2005).

5.1. Resilience against semantic-aware detection
approaches

For semantic-aware malware detection (Christodorescu et al.,

2005), the binary program is disassembled and brought to an

architecture-independent intermediate representation, which

is then matched against templates describing malicious

behavior. In order to be able to detect basic obfuscation

methods like register reassignment or instruction reordering (e.g.,
by inserting jumps in the control flow graph), so-called def-use

chains (relationshipbetween thedefinitionofavariable and the

use of the same variable somewhere else in the program) are

utilized. Furthermore, a value-preservation oracle is imple-

mented for detecting NOP instructions and NOP fragments.

5.1.1. IR Normalization
Theapproach introducedbyChristodorescuetal. (2005) isbased

on IDAPro for decompilation of the program to be analyzed. By

generating an intermediate representation, semantically

equivalent instruction replacements such as INC EAX, ADD

EAX, 1, and SUB EAX, �1 are normalized with semantically

disjointoperationsandcan thenbematchedagainst thegeneric

template, which describes malicious behavior.
5.1.2. Semantics detection
Since the general problem of deciding whether one program is

an obfuscated form of another program is closely related to

the halting problem, which in general is undecidable (Turing,

1936), the presented algorithm uses the following strategy to

match the program to the template: The algorithm tries to

match (unify) each template node to a node in the program. In

case two matching nodes are found, the def-use relationships

in the template are evaluated with respect to the program

code. If they hold true in the actual program, the program

fragment matches the template.
5.1.3. Value preservation and NOP detection
The goal of this analysis step lies in the detection of NOP

fragments, i.e., instruction sequences that do not change the

values of the watched variables. The following strategies were

implemented by Christodorescu et al. (2005): (i) Matching in-

structions against a library of known NOP instructions and

NOP fragments, (ii) symbolic execution with randomized

initial states, and (iii) two different theorem provers.
5.1.4. Resilience against the approach
As outlined by the authors, the semantic-aware malware

detection approach is able to detect instruction reordering and

register reassignment aswell as a garbage insertion. Furthermore,

with respect to the underlying instruction replacement en-

gine, a limited set of replaced instructions can be detected.

However, this approach is not able to detect obfuscation

techniques using equivalent functionality or reordered memory

access. In Fig. 3 we give an example of a code fragment (left)

that is matched to a template (center) and an obfuscated form

(right) of the same fragment. The obfuscation steps applied

are flagged with the letters (A) and (B). Note that for reasons of

simplicity, JMP instructions have been omitted from the

illustration.

Since our obfuscation technique does notwork by inserting

NOP fragments, the direct detection and removal of them has

no impact on our approach. Nevertheless, we use these

mechanisms in the course of the matching algorithm in order

to check for value preservation. The semantic detection relies

heavily on the algorithm applying local unification by trying to

find bindings of program nodes to template nodes. It is

important to note that the bindings may differ at different

program points, i.e., one variable in the template may be

http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006

Table 2 e Impact on binary size.

Tool Version Size (normal) Size (obfuscated) %

MD5 2.2 12,101 bytes 12,227 bytes 1,04

bzip2 1.0.6 109,459 bytes 116,975 bytes 6,87

aescrypt 3.05 46,398 bytes 46,718 bytes 0,69

4 http://www.fourmilab.ch/md5/.
5 Output of the Unix file command.

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 1 3e2 6 23
bound to different registers in the program, and the binding is

therefore not consistent. The idea behind this approach lies in

the possibility to detect register reassignments. In order to

eliminate inconsistent matches that cannot be solved using

register reassignment, a mechanism based on def-use chains

and value-preservation (using NOP detection) is applied.

The local unification used to generate the set of candidate

matches that is then reduced using def-use chains and value

preservation is limited by several restrictions. The following

two are the most important ones with respect to our obfus-

cationmethod: (i) If operators are used in a template node, the

node can only be unified with program nodes containing the

same operators and (ii) symbolic constants in template nodes

can only be unified with program constants. The obfuscation

pattern (B) in Fig. 3 violates restrictions (i) and (ii) as, e.g., the

simple “þ”-function is replaced by aMOV instruction followed

by looping an XCHG instruction. The same holds true for

obfuscation pattern (C). In case of obfuscation pattern (A) even

the control flow graph was changed as the explicit jump in-

struction following the condition aswell as the condition itself

are replaced by an assignment and a LOOP instruction. Thus,

the local unification engine is not able tomatch these program

fragments to the respective template fragments.

In order to generate the set of match candidates, the local

unification procedure must be able to match program nodes

with template nodes, relying on the IR-engine to detect

semantically identical program nodes and to convert them

into the same intermediate representation. However, authors

state that “[.] same operation [.] has to appear in the pro-

gram for that node to match.”. For example, an arithmetic left

shift (eax ¼ eax� 1) would not match a multiplication by 2

(x ¼ x * 2) despite these instructions being semantically

equivalent. Therefore, we can safely conclude that re-

placements with side effects as proposed in our concept

would notmatch in the local unification as they do not use the

same operations as the original code for implementing a

specific functionality.

One could argue that once the concept of COVERT COMPUTA-

TION is publicly known, malware detectors could simply

improve the hardware models on which the instruction

replacement engine is based to be able to identify malicious

behaviors implemented in side effects. While in theory, every

single aspect of the hardware could bemapped to themachine

model, we strongly believe that this is an unrealistic

assumption for real-life applications. Increasing the level of

detail and completeness of the model is costly in terms of

analysis performance. Thus, its practical applicability in real-

life malware detection scenarios, where the decision on ma-

liciousness has to be made in real time, is limited. A more

complex model also increases the complexity of the evalua-

tion, so the model has to be kept as general as possible, pre-

venting completeness in semantic-aware program analysis.

Today’s virus scanners as well as semantic-aware malware

detection concepts are not even able to cover the entire se-

mantics of code free from side effects. Following the original

argument of the possibility of a complete model, mapping

these semantics should have been even more trivial. Addi-

tionally, there is another crucial aspect that significantly

limits detection. Themodel does not only have to be complete,

it also has to be able to detect equivalence on a semantic level.
However, based on Turing’s halting problem (Turing, 1936), we

know that deciding equivalence is not possible in general.

Another important aspect is diversity. Christodorescu et al.

(2005) argue that a malware author would have to “devise

multiple equivalent, yet distinct, implementations of the

same computation, to evade detection”. With COVERT COMPUTA-

TION we have shown that side effects in the microprocessor

can be used to achieve exactly this requirement.
6. Evaluation

To evaluate the practicability of our approach we compared

obfuscated binaries of three different Unix programs against

their non-obfuscated versions. In addition, we performed a

manual analysis of size and complexity overhead with real

malware samples.

6.1. Prototype implementation

We measured performance and binary size overhead using

our prototype implementation that intercepts the compilation

process of LLVM (Lattner and Adve, 2004). We selected three

Unix programs (MD5,4 bzip2, aescrypt) and compiled each of

them with two different configurations. The first version was

compiled without any modifications to the code with LLVM,

while the second one implements functionality inside side

effects for the ADD and the SUB instruction.

6.1.1. Binary size
Binary size increase depends on the frequency of instructions

that are replaced with semantically equivalent sequences of

instructions. Table 2 shows a comparison of the binary size of

the three programs used in our evaluation. Bzip2 contained a

proportionally large number of ADD and SUB instructions,

therefore, the increase of binary size was larger than for the

other two programs. Still, we consider an increase of about 7%,

which is well below similar approaches such as Wu et al.

(2010), as acceptable.

6.1.2. Performance
For the performance evaluation, we ran all three programs on

four different input files: an audio file (221 MB, Audio file with

ID3 version 2.2.0, contains MPEG ADTS, layer III, v1, 192 kbps,

44.1 kHz, Stereo5), plain text (127.7 MB, UTF-8 Unicode English

text, with very long lines), a movie (203.2 MB, ISO Media, Apple

QuickTime movie), and an image (299.9 MB, TIFF image data,

little-endian). The programs were run with default settings,

for the evaluation of aescrypt we performed one entire

encryption/decryption run. We measured the execution time

http://www.fourmilab.ch/md5/
http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 1 3e2 624
for each program (normal and obfuscated) and calculated the

arithmetic average of ten independent runs each. The results

can be found in Fig. 4

In our prototype the implementation of functionality in

side effects does not noticeably increase compilation time.

The actual compilation process is by far the more time

consuming task than the implementation of functionality in

side effects. Thus, compilation time overhead is insignificant.

Except fromMD5 the test runswith the obfuscated binaries

show performance decreases well below 15%. The best results

were achieved with aescrypt for which the biggest runtime

increase we were able to measure was 3.1% for the TIFF file.

Themain reason for these differences is that the performance

of code based on side effects for ADD and SUB instructions

depends heavily on the operand that contains the value that is

added to or subtracted from the specified register. A higher

value requires the loop (refer to Listing 3) to be executed more

often in order to generate the correct value in the target reg-

ister. In the case of aescrypt, these values were considerably

lower on average than in MD5 and bzip2.
Table 3 e Opcode frequency in malware samples
(D [Dorkbot, G [Gamarue, S [Sality, Y[Yeltminky).

D % G % S % Y %

MOV 611 32.40 207 25.91 79 21.41 126 29.65

SUB 57 3.02 117 14.64 3 0.81 1 0.24

INC 42 2.23 43 5.38 22 5.96 8 1.88

AND 32 5.24 14 6.76 3 3.80 0 0

XOR 79 4.19 38 4.76 1 0.27 3 0.71
6.2. Real malware samples

We further theoretically evaluated implications of COVERT

COMPUTATION on program complexity and size of the modified

code based on tests with four recent malware samples we

obtained from iSecLab’s Anubis (iSeclab, 2009). In particular,

we used samples of Win32/Dorkbot, Win32/Gamarue, Win32/

Sality-A, and Win32/Yeltminky for our evaluation. We calcu-

lated the average complexity increases as well as the growth

of the binary for three different implementation rates of

COVERT COMPUTATION. In this evaluation, 10, 20, and finally 50% of

MOV, SUB, and INC instructions were replaced by covert code

as described in Section 3. Fig. 5a shows the size overhead for

the four tested malware samples in detail. In the first case,

where 10% of all suitableMOV, SUB, and INC instructionswere

hidden inside side effects of innocent looking code, the size

overhead for all fourmalware sampleswas belowfive percent,

whereas for the highest implementation rate (50%), the over-

head was between 14 and 23 percent. Dorkbot’s large space

overhead results from the high percentage of MOV in-

structions. Almost one third of thismalware’s instructions are

MOVs.

As Fig. 5b shows, the complexity was heavily increased by

the implementation of covert code sequences. For a 10%

replacement rate, the execution complexity for the four mal-

ware samples was about 4.5 times the complexity of the un-

modified versions of the code. We calculated a maximum of

8.89 for the malware sample of Dorkbot in case 50% of the

instructions are replaced. While these increases in

complexity, which cause performance slowdowns, are rather

severe, we argue that certain types of malware are not per-

formance critical. An example would be slow-spreading

worms such as Code Red (Zou et al., 2002), which try to

silently infect a large number ofmachines. The primary aim of

this type ofmalware is to operate as stealthy as possible, while

performance is of minor interest. Therefore, we strongly

believe that there is a real threat of malware that implements

hidden functionality in a trade-off with performance.
6.3. Limitations

A possible attack on the concept of COVERT COMPUTATION is to

statistically analyze the frequency of opcodes and compare

them to samples of non-malicious programs. This idea of

malware detection by analyzing opcode distribution was

introduced by Bilar (2007). The paper concludes that the dis-

tribution of common opcodes is a relatively weak predictor for

themaliciousness of software. In our evaluation, we came to a

similar conclusion. As Table 3 shows, the four evaluated

malware samples have very different opcode distribution

patterns. While MOV instructions represent over 32% of all

instructions of the malware sample Dorkbot, the code of Sality

contains only about 25% MOV instructions. Replacing some of

these instructions with semantically different sequences of

instructions does not implicitly result in an uncommon and

thus suspicious distribution of opcodes. However, as

concluded by Bilar (2007), the frequency of rarely used opc-

odes is far more important for malware detection. Opcodes

that are rarely used by compilers indicate additional optimi-

zations and fine-tuning adjustments of the code e which is

common for malware according to Bilar (2007). Some of the

opcodes we use as hosts for hidden functionality, such as

LOOP and RCL, are not commonly used by compilers and,

therefore, overrepresented in programs that implement our

approach. As a simple mitigation strategy, various host code

fragments with different opcodes can be used on an alter-

nating basis in order to keep the distribution of instructions as

unobtrusive as possible.

Moreover, dynamic analysis techniques (such as evalu-

ating the maliciousness of a program by monitoring system

calls (Bayer et al., 2009)) are entirely unaffected by side-effect

based obfuscation as they analyze the effects of the code

rather than the code itself. However, in a malware context

dynamic analysis requires the evaluated program to be run in

a protected environment in order to prevent harmful actions

to the host it is run. Thus, in host based malware analysis

scenarios (end-user virus scanners), dynamic analysis does

not play a major role.
7. Conclusions and future work

In this paper we proposed the obfuscation concept COVERT

COMPUTATION which hides (malicious) code in innocent looking

programs. We have shown that the complexity of today’s

microprocessors, which support a large set of different in-

structions, can be exploited to hide functionality in a pro-

gram’s code as small code portions. Our prototype

http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 1 3e2 6 25
implementation is based on the idea of compile-time obfus-

cation that allows to apply code obfuscation during compila-

tion in order to mitigate problems resulting from applying the

obfuscating transformation either too early at source code

level (before code optimization at compile time) or in the final

binary (where it is difficult to validate the correctness of

modifications and a lot of meta-data needed for efficient

obfuscation is missing). With the help of a prototype imple-

mentation, which perfectly integrates into existing software

development toolchains, we were able to show the practica-

bility of our approach. With moderate overhead, it is possible

to hide possibly malicious functionality in a program’s code.

In our future research, we aim to tackle the discussed

limitation of opcode distribution by combining our approach

with the concept of mimimorphism (Wu et al., 2010) in order to

generate code with a distribution of opcodes that mimics any

non-malicious reference program. Furthermore, we aim at

extending our concept to other microprocessor architectures.

RISC based platforms such as ARM are of particular interest as

their less-complex instructions are less likely to include side

effects, thus it is more difficult to implement covert

functionality.
Acknowledgments

The research was funded under Grant 826461 (FIT-IT) by the

FFG e Austrian Research Promotion Agency and the Josef

Ressel Center for User-friendly Secure Mobile Environments

by the Christian Doppler Research Association (Project 627).
r e f e r e n c e s

Bayer U, Habibi I, Balzarotti D, Kirda E, Kruegel C. A view on
current malware behaviors. In: Proceedings of the 2nd USENIX
conference on large-scale exploits and emergent threats:
botnets, spyware, worms, and more. USENIX Association; 2009
[pp. 8e8].

Bilar D. Opcodes as predictor for malware. Int J Electron Secur
Digital Forensics 2007;1(2):156e68.

Bruschi D, Martignoni L, Monga M. Detecting self-mutating
malware using control-flow graph matching. In: Detection of
intrusions and malware & vulnerability assessment 2006.
pp. 129e43.

Chow S, Eisen P, Johnson H, Van Oorschot P. White-box
cryptography and an aes implementation. In: Selected areas in
cryptography. Springer; 2003. pp. 250e70.

Christodorescu M, Jha S. Testing malware detectors. ACM
SIGSOFT Softw Eng Notes 2004;29(4):34e44.

Christodorescu M, Jha S, Seshia S, Song D, Bryant R. Semantics-
aware malware detection. In: Security and privacy, 2005 IEEE
symposium on. IEEE; 2005. pp. 32e46.

Collberg C, Thomborson C, Low D. A taxonomy of obfuscating
transformations [Tech. rep]. New Zealand: Department of
Computer Science, The University of Auckland; 1997.

Crandall J, Su Z, Wu S, Chong F. On deriving unknown
vulnerabilities from zero-day polymorphic and metamorphic
worm exploits. In: Proceedings of the 12th ACM conference on
computer and communications security. ACM; 2005.
pp. 235e48.
Dalla Preda M, Christodorescu M, Jha S, Debray S. A semantics-
based approach to malware detectionIn ACM SIGPLAN
Notices, vol. 42. ACM; 2007. pp. 377e88.

Dalla Preda M, Christodorescu M, Jha S, Debray S. A semantics-
based approach to malware detection. ACM Transact Program
Lang Syst (TOPLAS) 2008;30(5):25:1e25:53.

De Sutter B, Anckaert B, Geiregat J, Chanet D, De Bosschere K.
Instruction set limitation in support of software diversity. In:
Information security and cryptologyeICISC 2008 2009.
pp. 152e65.

Egele M, Scholte T, Kirda E, Kruegel C. A survey on automated
dynamic malware-analysis techniques and tools. ACM
Comput Surv (CSUR) 2012;44(2):6.

Ferrie P. This sig doesn’t run. Virus Bulletin; January 2012.
Giacobazzi R. Hiding information in completeness holes: new

perspectives in code obfuscation and watermarking. In:
Software engineering and formal methods, 2008. SEFM’08Sixth
IEEE International Conference on. IEEE; 2008. pp. 7e18.

Griffin K, Schneider S, Hu X, Chiueh T. Automatic generation of
string signatures for malware detection. In: Recent advances
in intrusion detection. Springer; 2009. pp. 101e20.

iSeclab. Anubis [Online; retrieved January 12th, 2013], http://
anubis.iseclab.org; 2009.

Kinder J, Katzenbeisser S, Schallhart C, Veith H. Detecting
malicious code by model checking. In: Detection of intrusions
and malware, and vulnerability assessment 2005. pp. 514e5.

Kolbitsch C, Comparetti P, Kruegel C, Kirda E, Zhou X, Wang X.
Effective and efficient malware detection at the end host. In:
Proceedings of the 18th conference on USENIX security
symposium. USENIX Association; 2009. pp. 351e66.

Lanzi A, Balzarotti D, Kruegel C, Christodorescu M, Kirda E.
Accessminer: using system-centric models for malware
protection. In: Proceedings of the 17th ACM conference on
computer and communications security. ACM; 2010.
pp. 399e412.

Lattner C, Adve V. Llvm: a compilation framework for lifelong
program analysis & transformation. In: Code generation and
optimization, 2004. CGO 2004. International symposium on.
IEEE; 2004. pp. 75e86.

Lyda R, Hamrock J. Using entropy analysis to find encrypted and
packed malware. Secur Priv IEEE 2007;5(2):40e5.

Madou M, Anckaert B, De Bus B, De Bosschere K, Cappaert J,
Preneel B. On the effectiveness of source code transformations
for binary obfuscation; 2006.

Moser A, Kruegel C, Kirda E. Limits of static analysis for malware
detection. In: Computer security applications conference,
2007. ACSAC 2007. Twenty-third annual. IEEE; 2007.
pp. 421e30.

Nachenberg C. Computer virus-coevolution. Commun ACM
1997;50(1):46e51.

O’Kane P, Sezer S, McLaughlin K. Obfuscation: the hidden
malware. Secur Priv IEEE 2011;9(5):41e7.

Schrittwieser S, Katzenbeisser S, Kieseberg P, Huber M,
Leithner M, Mulazzani M, et al. Covert computation: hiding
code in code. In: In Proceedings of the 8th ACM symposium on
information, computer and communications security
(ASIACCS 2013). ACM; 2013.

Schwarz B, Debray S, Andrews G. Disassembly of executable code
revisited. In: Reverse engineering, 2002. Proceedings. Ninth
working conference on. IEEE; 2002. pp. 45e54.

Sharif M, Yegneswaran V, Saidi H, Porras P, Lee W. Eureka: a
framework for enabling static malware analysis. In: Computer
security-ESORICS 2008 2008. pp. 481e500.

Smithson M, Anand K, Kotha A, Elwazeer K, Giles N, Barua R.
Binary rewriting without relocation information. USPTO
patent pending no. 12 785. 2010.

Song Y, Locasto ME, Stavrou A, Keromytis AD, Stolfo SJ. On the
infeasibility of modeling polymorphic shellcode. In:

http://refhub.elsevier.com/S0167-4048(14)00003-0/sref1
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref1
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref1
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref1
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref1
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref1
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref2
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref2
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref2
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref3
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref3
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref3
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref3
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref3
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref4
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref4
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref4
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref4
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref5
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref5
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref5
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref6
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref6
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref6
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref6
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref7
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref7
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref7
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref8
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref8
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref8
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref8
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref8
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref8
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref9
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref9
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref9
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref9
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref10
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref10
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref10
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref10
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref11
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref11
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref11
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref11
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref11
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref11
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref12
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref12
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref12
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref13
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref14
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref14
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref14
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref14
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref14
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref15
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref15
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref15
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref15
http://anubis.iseclab.org
http://anubis.iseclab.org
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref17
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref17
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref17
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref17
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref18
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref18
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref18
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref18
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref18
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref19
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref19
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref19
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref19
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref19
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref19
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref20
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref20
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref20
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref20
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref20
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref21
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref21
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref21
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref22
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref22
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref22
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref23
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref23
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref23
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref23
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref23
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref24
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref24
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref24
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref25
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref25
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref25
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref26
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref26
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref26
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref26
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref26
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref27
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref27
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref27
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref27
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref28
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref28
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref28
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref28
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref29
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref29
http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 1 3e2 626
Proceedings of the 14th ACM conference on computer and
communications security. ACM; 2007. pp. 541e51.

Turing A. On computable numbers, with an application to the
entscheidungsproblem. In: Proceedings of the London
mathematical society, vol. 42; 1936. pp. 230e65.

Weaver R. A probabilistic population study of the conficker-c
botnet. In: Passive and active measurement. Springer; 2010.
pp. 181e90.

Willems C, Holz T, Freiling F. Toward automated dynamic
malware analysis using cwsandbox. IEEE Secur Priv 2007:32e9.

Wu Z, Gianvecchio S, Xie M, Wang H. Mimimorphism: a new
approach to binary code obfuscation. In: Proceedings of the
17th ACM conference on computer and communications
security. ACM; 2010. pp. 536e46.

Zou C, Gong W, Towsley D. Code red worm propagation modeling
and analysis. In: Proceedings of the 9th ACM conference on
computer and communications security. ACM; 2002.
pp. 138e47.

Sebastian Schrittwieser is a PhD candidate at the Vienna Uni-
versity of Technology and a researcher at SBA Research, the
Austrian non-profit research institute for IT-Security. His research
interests include, among others, digital forensics, software pro-
tection, code obfuscation, and digital fingerprinting. Sebastian
received a Dipl.-Ing. (equivalent to MSc) degree in Business
Informatics with focus on IT security from the Vienna University
of Technology in 2010.

Stefan Katzenbeisser is a full professor at TUDarmstadt, where he
is heading the Security Engineering Lab (SecEng). His main
research interests are in the area of the design and analysis of
cryptographic protocols, privacy-enhancing technologies, and
software security.

Peter Kieseberg is a researcher at SBA Research, the Austrian non-
profit research institute for IT-Security. He received a Dipl. Ing.
(equivalent to MSc) degree in Technical Mathematics in Computer
Science from the Vienna University of Technology. His research
interests include digital forensics, fingerprinting of structured
data and mobile security.

Markus Huber is a computer security and privacy researcher from
Austria. He works for SBA Research, an industrial research center
for IT-Security founded by the Vienna University of Technology,
Graz University of Technology, and University of Vienna.

Manuel Leithner is researcher at SBA Research, the Austrian non-
profit research institute for IT-Security. His research interests
include mobile security, cloud computing and code obfuscation.

Martin Mulazzani is a Ph.D. student in Computer Science at the
Vienna University of Technology, Vienna, Austria; and a Com-
puter Security Researcher at SBA Research, Vienna, Austria. His
research interests include privacy, digital forensics and applied
security.

Edgar Weippl is the Research Director at SBA Research, Vienna,
Austria; and an Associate Professor of Computer Science at the
Vienna University of Technology, Vienna, Austria. His research
focuses on information security and e-learning.

http://refhub.elsevier.com/S0167-4048(14)00003-0/sref29
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref29
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref29
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref30
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref30
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref30
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref30
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref31
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref31
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref31
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref31
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref32
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref32
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref32
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref33
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref33
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref33
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref33
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref33
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref34
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref34
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref34
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref34
http://refhub.elsevier.com/S0167-4048(14)00003-0/sref34
http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006

	Covert Computation — Hiding code in code through compile-time obfuscation
	1 Introduction
	2 Related work
	3 Side effects
	3.1 Flags
	3.2 LOOP Instruction
	3.3 String instructions
	3.4 Instruction set extensions

	4 Compile-time obfuscation
	5 Security analysis
	5.1 Resilience against semantic-aware detection approaches
	5.1.1 IR Normalization
	5.1.2 Semantics detection
	5.1.3 Value preservation and NOP detection
	5.1.4 Resilience against the approach

	6 Evaluation
	6.1 Prototype implementation
	6.1.1 Binary size
	6.1.2 Performance

	6.2 Real malware samples
	6.3 Limitations

	7 Conclusions and future work
	Acknowledgments
	References

