
Towards Fully Automated Digital Alibis with

Social Interaction

Stefanie Beyer*, Martin Mulazzani*

Sebastian Schrittwieser§, Markus Huber*, Edgar Weippl*

* SBA Research, Vienna

[1stletterfirstname][lastname]@sba-research.org

§ University of Applied Sciences St. Pölten

sebastian.schrittwieser@fhstp.ac.at

Abstract

Digital traces found on local hard drives and in online activity have be-

come the most important data source for the reconstruction of events in

digital forensics. As such, digital alibis have already been used in court de-

cisions and during investigations. In this paper we want to show that forged

alibis can be created, which include online activity and social interactions.

We are the first to use social interactions in digital alibis, and implemented

a proof of concept that can be automated to create false digital alibis. Our

framework simulates user activity, is fully automated and able to communi-

cate using email as well as instant messaging using a chatbot. We evaluate

our framework by extracting forensic artifacts and comparing them with re-

sults of real users in a user study.

Keywords: Digital Forensics, Automated Alibis

1 Introduction

Digital forensics techniques are nowadays applied to more and more criminal

investigations due to the ever increasing prevalence of computers, smart-

phones and the involvement of modern technology in crimes. Traces like

MAC-timestamps and OS-specific log files left on hard drives and informa-

tion transmitted over network connections often are combined to produce

a holistic reconstruction of events and for specific times of interest [3, 16].

Digital alibis as such are commonly used in reliable expert witness opinions

to charge and discharge suspects in court, as well as during the investigation

itself.

In this paper we present a framework that can fully simulate user interac-

tion and implements the automated creation of digital alibis with special fo-

cus on online social interactions like writing emails and chatting with friends.

Social interactions have been so far neglected in previous work. The frame-

work is highly configurable, and we are planning to release it under an open

source license1. Our framework is able to counter hard drive and network

1Note to the reviewers: we will include the link here once the paper is accepted for

forensics as it is conducted today. We evaluate our framework by comparing

it with the usage of real world users, and show that digital forensic analysis

methods are not reliable if they are specifically targeted. The goal of this pa-

per is to raise awareness that digital alibis can be forged. We want to question

the reliability of digital alibis, intend to show that digital alibis can be forged.

The rest of the paper is organized as follows: Section 2 gives an overview

of the relevant research areas of digital forensics for this paper, as well as

related work. Section 3 presents our framework which was implemented as

proof-of-concept to show the feasibility to forge digital alibis. In Section 4,

we compare and evaluate our framework compared with real-world users. We

discuss the results in Section 5, and conclude in Section 6.

2 Background

Several cases can be found where evidence for digital alibis played an impor-

tant role. In one case, Rodney Bradford was charged of armed robbery but

was released because of digital evidence that confirms that he was performing

activities on his Facebook account during the time of the crime [17]. This

digital evidence was later called an ”unbeatable alibi” [8] by his attorney.

In another case, a suspected murderer was acquitted because of digital ev-

idence [9, 7]. During the time of the crime, working activity was found on

publication

the suspect’s laptop.

Usually a forensic analyst is confronted with multiple hard drives that

have been imaged using hardware write blockers [2], and is asked specific

questions about user actions that have or have not been conducted on the

corresponding computers [4]. Modern communication technologies like online

social networks [15] or smartphones [14, 13] can additionally increase the

broad spectrum of digital traces. In the future, due to ever increasing storage

capacity of consumer devices and overall case complexity, automated analysis

will be crucial [12] to extract information of interest [11] in a reasonable

amount of time.

2.1 Related Work

In the literature, several concepts for the analysis as well as the automatic

construction of digital alibis can be found [10, 6] . However, existing alibi gen-

erators often use proprietary languages like AutoIt (Windows) or Applescript

(OS X) and thus are specific to the underlying operating system that they

run on e.g., Android [1], OS X [7], or Windows [10, 6]. Our framework does

not rely on any os-specific components or software, and can thus run (with

minor adaptions) on any Desktop operating system that runs Python. We

implemented our prototype for Linux as there weren’t any related frameworks

available on Linux so far. We furthermore compared numerous configuration

parameters with real world users, making our approach statistically harder

to detect (with randomized values) and the persistently stored evidence more

realistic compared to related work.

The previously described approaches try to hide the program, for instance

with the help of harmless file names or on a separate storage device. Instead

of using a file wiper for post processing to remove suspicious traces, our

framework is constructed in such a way that there are no obvious traces left

behind (despite the framework itself). For a forensic analyst, it should be not

decidable if the artifacts on disc originate from the framework or a human

user as we instrument (among other things) keyboard signals and mouse click

events.

3 Alibi Generator Framework

The goal of our framework can be put simply: to simulate user activity as

realistic and thorough as possible. To such extend, we want to simulate stan-

dard user activity: browsing the web, chatting with instant messaging soft-

ware, writing emails and creating & editing documents of various kind. The

concrete actions run by the framework should not be scripted or predictable,

but randomized yet still realistic and convincing for a forensic investigator.

Different word lists and online sources like Google Trends are used as inputs

to capture a snapshot of current online interests with the need to incorpo-

rating specific user preferences at the same time. Many factors of computer

usage are highly user dependent, and for the alibi framework to be as realistic

as possible, factors like common online social interaction partners for chat-

ting and email, language of communication as well as time delays between

actions and usual concurrent actions need to be configured beforehand. So-

cial interaction in particular is vulnerable to traffic analysis, as not only the

content of the messages is of interest, but who is communicating with whom.

The response time is also dependent on the length of the messages, which

needs to be considered when simulating social interactions.

3.1 Implementation

Our proof-of-concept was implemented on Ubuntu 12.04 LTS using Python.

The core features of the framework were chosen similar to the approaches

in [7, 6]. In essence our implementation is split into three main components:

the scheduler, the program manager and the social interaction component.

Once the framework is started, the scheduler is in charge of overall manage-

ment, it controls startup and triggers shutdown of all programs involved. It

has the purpose of deciding which actions to take, either local or online, and

when. The program manager runs and manages all applications, including

the browser, the email- and chat software. The social interaction component

consists of a chatbot for instant messaging and the email manager, responsi-

ble for email communications.

The framework can start and use local applications by sending key strokes

and mouse clicks. Our framework comes pre-configured to use and handle the

following applications in a meaningful manner: Firefox, gedit, LibreOffice,

Thunderbird, Skype, and VLC. For automation the Python libraries xau-

tomation2, skype4py3 and the chatbot implementation pyAIML4 are used.

Furthermore, we use splinter 5 for the automation of Firefox, which is based

on Selenium6. Thus our implementation can browse the web, send and re-

ceive emails, chat in Skype, open and edit documents (LibreOffice and gedit)

and start programs like music or video players. Figure 1 shows the main

features of our proof-of-concept. Related features which are not yet imple-

mented are marked in grey. Frequency and content of alibi events were de-

rived from the analysis of several typical office workstations at our university.

More specifically, our framework queries Google and follows suggested

links, tweets on Twitter and logs into Facebook, can search for Youtube

videos and browses websites with random mouse clicks and following links.

New emails are drafted, received emails are forwarded, and answers to emails

are sent with a reasonable delay. Additionally it is possible to mark new

emails as read and delete emails. The action to be performed is chosen at

random, not every email that is read will be replied to. The subject and

content of emails can be predefined and stored in lists. Regarding instant

2http://hoopajoo.net/projects/xautomation.html
3http://sourceforge.net/projects/skype4py
4http://pyaiml.sourceforge.net
5http://splinter.cobrateam.info/
6http://www.seleniumhq.org

Figure 1: Conceptional Alibi Framework

messaging answering to incoming messages of buddies is supported, with

the help of a chatbot. Reasonable time delays depending on the size of the

response or on a random delay are implemented. Chat templates can be

easily adapted due to the use of AIML [18]. If the timer of the scheduler

expires, the chatbot says goodbye to his buddies and shuts down. Editing

of local documents is implemented either by deleting a random amount of

content, inserting predefined texts which fits the content of document at a

random position. We implemented the use of LibreOffice by simulating key

strokes and mouse clicks, as there are no Python bindings for LibreOffice

available.

However, one post-processing step is necessary: Splinter has to use a

seperate firefox profile, and can not work on the user’s profile directly. On

startup splinter copies the user’s profile to /tmp, and we overwrite the user’s

profile on shutdown by moving it back. Depending on the user’s threat

model, additional steps might be appropriate.

4 Evaluation

To evaluate our implementation we compare the framework with real world

users. Since the particular usage is highly dependent on the person using

it, this evaluation is intended to show that the default configuration is rea-

sonable. We asked nine volunteers to use a virtual machine for 30 minutes

just like they usually use their computer, and compared it with a single run

of our framework. They were asked to browse the web, send emails, chat,

edit documents or do anything they usually would do in their own environ-

ment. Forensic analysis was applied afterwards on the image of the virtual

machine using Sleuth Kit and Autopsy, to extract data in a forensic man-

ner. For that, the timestamps of the entire file system are extracted, as well

as files that contain user data of interest are manually inspected. Manual

analysis was conducted on the browser history places.sqlite of Firefox, the

local mailbox files by Thunderbird, and the chat history main.db of Skype

to extract timestamps, message content, conversation partner and the time

interval between messages, emails and visited websites. Network forensics

would have been an alternative approach for evaluation, by inspecting the

network traffic. However, hard drive analysis allows to extract unencrypted

as well as additional information like local timestamps, and has thus been

the evaluation method of choice. We then used different metrics to compare

our framework with real world users during the half hour period e.g., the

number of visited websites, duration of visit on websites and the number of

chat messages sent and received.

Figure 2 shows the exemplary timeline of 20 minutes framework run-

time. The social interaction can be clearly observed, in total 12 messages

are sent from the social interaction component to various recipients, either

as responses in ongoing conversations or as new messages to initialise con-

versations. The browser is directed to different websites and follows links to

simulate further browsing (not shown in the figure). This includes news sites

like nytimes.com and prominent news stories on the front page, youtube.com

and videos from the ”most popular” section, as well as the top videos from

random search queries. Local timestamps as well as history logs are written

to disk in all cases. Furthermore VLC is started and a local video from the

hard drive is opened, which is also reflected in the timestamps on disk.

4.1 User Survey

Regarding the browsing behavior of the user group, target websites and

time patterns have been extracted. The most popular websites have been

17:19 17:20 17:21 17:22 17:23 17:24 17:25 17:26 17:27 17:28 17:29 17:30 17:31 17:32 17:33 17:34 17:35 17:36 17:37

17:1817:2117:2517:2617:2817:3017:3117:3217:3317:3517:36

Answer / Send Skype Message
17:36

17:24

Browse to Google,
search „java tutorial“

17:29

Browse to youtube,
watch popular video

17:34

Browse to website
nytimes.com

17:22

Start Firefox,
browse to wikipedia

17:32

Start VLC,
watch local video

Figure 2: Exemplary Timeline of 20 Minutes Framework Activity

google.com, facebook.com as well as some Austrian news sites. The frame-

work on the other hand used a preconfigured list of websites as well as ran-

domized google queries. The five most visited websites however matched in

4 out of 5 cases between the framework and the users. Some time patterns

that were extracted can be seen in Table 1. The test users did not receive

any emails due to our setup, but were asked to send some. On average, one

email was sent per user. The maximum number of sent emails by the users

was 3, the minimum 0. The majority of test persons did not write an email.

The words in an email vary in number between 6 and 51 words, the average

number of words is 21. The time between sending emails varies between 1

minute and 15 minutes.

Nearly all test persons did chat during their session. There are between

7 and 46 outgoing messages and between 15 and 35 incoming messages. The

Browsing parameters Framework Test Persons
Visited Websites 11 min: 1 max: 12 avg: 9
Time on Website (min) 8 sec 5 sec
Time on Website (max) 2 min 16 sec 13 min 05 sec
Time on Website (avg) 1 min 52 sec 2 min 50 sec

Table 1: Comparison of browsing patterns

shortest message is 1 word per message for each person. The highest number

of words in a chat message is 23 words. The topics in chat messages depend

strongly on the test person, there were topics such as health and small talk

as well as football or movies. The response time of chat messages was at

least 2 seconds and at most 8 minutes. The average response time is about 1

minute and 4 seconds. See Table 2 for details. The users furthermore edited

or opened one document (.ods or .pdf) during the 30 minute timeframe,

which is also consistent with the actions of the framework.

Chatting Parameters Framework Test Persons
Outgoing chat messages 22 (7/46/19)
Incoming chat messages 23 (15/35/21)
Length of chat messages (1/18/8) (1/23/4)
Response time (2s/175s/45s) (2s/480s/64s)

Table 2: Observed chat behavior (min/max/avg)

5 Discussion

Regarding the browsing habits of the framework we could show that the

number of visited websites is reasonable compared to the results from the

test persons. The time on each website is on average shorter than the time

of the test, but this is a parameter which can be easily changed (just like the

number of websites to visit). Some test persons stayed more than 10 minutes

on one site, but in general the simulator fits into the timely patterns of the

test persons. 4 of 5 of the most visited websites of the simulator are equal

to the most visited websites of the test persons, which is a very good result

as the websites were a-priori configured. However, the sites visited actually

per person, depend strongly on user’s preferences and have to be adapted.

In summary we can say that the surfing feature is properly simulated by

framework, but needs a user-specific configuration. Table 3 shows the over-

all comparison between the alibi framework and the values of the test persons.

Regarding chat and using the social interaction server, we were able to

observe that the response time to answer chat messages fits the expected

time frame. The framework does not response to every message, and the

time it waits for sending a response is within the observations from the real

users.

5.1 Limitations and Future Work

One limitation of our prototype is the lack of sophisticated contextual analy-

sis of instant messages. While AIML can be used to generate genuine-looking

conversations for short periods of time, a forensic analysis of extended conver-

sations probably would reveal the chatbot. While this is definitely a problem

in scenarios where the disk is analyzed forensically, generated alibis would

Feature Simulator Test persons

visited homepages 11 min: 1 max: 12

time on homepage 1m 52s min: 5s max: 2m 50s

most visited homepages matching in 4/5 sites

emails (out) 1 min: 0 max: 3

emails (in) 2 min: 0 max: 0

length of emails (words) 6 min: 6 max: 51

content of emails matching in 1/4 topics

chat messages (out) 22 min: 7 max: 46

chat messages (in) 23 min: 15 max: 35

length in words avg: 8 min: 1 max: 23

response time avg: 45s min: 2s max: 1m 4s

content of conversation matching in 2/5 topics

opened documents 1 min: 0 max: 2

document type .ods .ods, .odt, .pdf

Table 3: Overall comparison framework vs. survey users

most likely withstand network forensic analysis because most protocols such

as Skype implicitly encrypt messages anyway. For unencrypted email con-

versations, this limitation is more important. In future work, we thus aim at

identifying methods for more content-dependent responses.

Another limitation is adaptivity. To forge a digital alibi reliably it is nec-

essary to adapt the framework to the user’s preferences. For comparison of

efficiency of the framework, the values, ranges and preferences of results of

test systems were taken for reference values. To fit the typical system usage

of an individual, there are several possibilities to adapt the framework. Cur-

rently, most parameters of the framework are configured manually and have

to be adapted for each user. In the future the framework should be able to

adapt those parameters automatically. This may be realized by either col-

lecting the user’s specific information from user data or by collecting it over

a longer period as a learning phase. We would also like to compare long-term

runs of the framework with real user data, as 30 minutes is not particularly

long enough for all use cases where a digital alibi might be needed. Testing

and supporting other operating systems as well as other browsers is also a

goal for the future.

If the user has insufficient knowledge of the tools or the system it may happen

that there is unwanted evidence left behind. It is essential to continuously up-

grade and improve the framework, because operating systems and techniques

are constantly changing as well. We did not implement any obfuscation or

methods to hide the execution of the framework. Running it from external

media as suggested in [5] should be for example just one item in the list of

additional steps, as these techniques may strengthen the validity of a forged

alibi.

6 Conclusion

In conclusion, we were able to show that it is possible to forge digital alibis

with social interaction. We implemented a proof of concept and showed in

the evaluation that the results of forensic analysis of our framework meet

the range of values observed from real users. The framework has the ability

- if it is configured correctly - to simulate browsing, write and respond to

emails, chat with buddies, and opening and/or editing documents. The ex-

act execution of the simulation depends on the configurations that should be

adapted to user’s preferences. In order to show that the behavior simulated

by the framework differs from the actual user’s behavior, a very intimate

knowledge of the user’s habits and usage patterns is necessary. In the future,

we want to add a component for automatic configuration based on either ex-

isting log files, or use an additional learning phase to obtain an user-specific

configuration that is even more indistinguishable with respect to a forensic

investigator.

References

[1] P. Albano, A. Castiglione, G. Cattaneo, G. De Maio, and A. De San-

tis. On the construction of a false digital alibi on the android os. In

Intelligent Networking and Collaborative Systems (INCoS), 2011 Third

International Conference on, pages 685–690. IEEE, 2011.

[2] D. Brezinski and T. Killalea. Guidelines for evidence collection and

archiving. Request For Comments, 3227, 2002.

[3] F. P. Buchholz and C. Falk. Design and implementation of zeitline: a

forensic timeline editor. In DFRWS, 2005.

[4] B. Carrier. File system forensic analysis, volume 3. Addison-Wesley

Boston, 2005.

[5] A. Castiglione, G. Cattaneo, G. De Maio, and A. De Santis. Auto-

matic, selective and secure deletion of digital evidence. In Broadband

and Wireless Computing, Communication and Applications (BWCCA),

2011 International Conference on, pages 392–398. IEEE, 2011.

[6] A. Castiglione, G. Cattaneo, G. De Maio, A. De Santis, G. Costabile,

and M. Epifani. The forensic analysis of a false digital alibi. In Innovative

Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012

Sixth International Conference on, pages 114–121. IEEE, 2012.

[7] A. Castiglione, G. Cattaneo, R. De Prisco, A. De Santis, and K. Yim.

How to forge a digital alibi on Mac OS X. Multidisciplinary Research

and Practice for Information Systems, pages 430–444, 2012.

[8] CNN. Facebook status update provides alibi. (november 12, 2009),

http://edition.cnn.com/2009/crime/11/12/facebook.alibi/index.html,

June 2009.

[9] X. A. W. Community. Garlasco, alberto stasi acquitted (december

2009), http://richardseifer.xomba.com/garlasco alberto stasi acquitted,

June 2013.

[10] A. De Santis, A. Castiglione, G. Cattaneo, G. De Maio, and M. Ian-

ulardo. Automated construction of a false digital alibi. Availability,

Reliability and Security for Business, Enterprise and Health Informa-

tion Systems, pages 359–373, 2011.

[11] S. L. Garfinkel. Digital forensics research: The next 10 years. Digital

Investigation, 7:S64–S73, 2010.

[12] S. L. Garfinkel. Digital media triage with bulk data analysis and

bulk extractor. Computers & Security, 2012.

[13] A. Hoog. Android forensics: investigation, analysis and mobile security

for Google Android. Access Online via Elsevier, 2011.

[14] A. Hoog and K. Strzempka. iPhone and iOS Forensics: Investigation,

Analysis and Mobile Security for Apple iPhone, iPad and iOS Devices.

Elsevier, 2011.

[15] M. Huber, M. Mulazzani, M. Leithner, S. Schrittwieser, G. Wondracek,

and E. Weippl. Social snapshots: Digital forensics for online social

networks. In Proceedings of the 27th Annual Computer Security Appli-

cations Conference, pages 113–122. ACM, 2011.

[16] J. Olsson and M. Boldt. Computer forensic timeline visualization tool.

digital investigation, 6:S78–S87, 2009.

[17] T. N. Y. Times. I’m innocent. Just check

my status on facebook. (november 12, 2009),

http://www.nytimes.com/2009/11/12/nyregion/12facebook.html? r=2&,

June 2013.

[18] R. Wallace. The elements of aiml style. Alice AI Foundation, 2003.

	Introduction
	Background
	Related Work

	Alibi Generator Framework
	Implementation

	Evaluation
	User Survey

	Discussion
	Limitations and Future Work

	Conclusion

