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Abstract The collection, processing, and selling of personal
data is an integral part of today’s electronic markets, either as
means for operating business, or as an asset itself. However,
the exchange of sensitive information between companies is
limited by two major issues: Firstly, regulatory compliance
with laws such as SOX requires anonymization of personal
data prior to transmission to other parties. Secondly, transmis-
sion always implicates some loss of control over the data since
further dissemination is possible without knowledge of the
owner. In this paper, we extend an approach based on the
utilization of k-anonymity that aims at solving both concerns
in one single step - anonymization and fingerprinting of
microdata such as database records. Furthermore, we develop
criteria to achieve detectability of colluding attackers, as well
as an anonymization strategy that resists combined efforts of
colluding attackers on reducing the anonymization-level.
Based on these results we propose an algorithm for the gen-
eration of collusion-resistant fingerprints for microdata.
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Introduction

In today’s electronic markets personal information becomes
increasingly important as a tradable good. Entire business
models such as the one of Facebook are built upon the gener-
ation of value from the collection, processing and selling of
personal data from users. Especially in industries like tele-
communication, providers need to handle large sets of struc-
tured data containing private information and exchange them
with a fixed set of partners, e.g., in the course of interconnec-
tion billing or when using services of a clearing house. Due to
the high sensitivity of personal data, compliance with laws
and regulations such as SOX, HIPAA and others demands the
anonymization of personal data prior to forwarding to other
parties within a business context. In addition, once data is
disclosed to another party, any further dissemination is out of
control of the original owner. This raises the demand for
tracking mechanisms to identify data leaks. Especially in the
last years, the number of incidents including data loss rose
dramatically, reaching a new all-.time high in 2012 according
to “DataLossDB”, a well renowned source for data breaches1.
The inability of owners to keep control over the spread of data
is in particular a threat to anonymization efforts, as the com-
bination of multiple, differently anonymized sets can subvert
the anonymization and disclose sensitive information. This
attack vector is known as a collusion attack and is able to
result in great financial damage to affected companies, on the
one hand by direct penalties getting increasingly introduced

1 www.datalossdb.org (Accessed: December 27th 2013)
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by federal bureaus, on the other hand by eventually reducing
customer’s trust in the company, an asset that is especially
important in today’s electronic markets with their highly flex-
ible and volatile customer bases.

Watermarking and fingerprinting are techniques which al-
low owners to add unique marks to their data sets to identify
them later on. Identification of leaked anonymized data may
be very important in markets dealing with information itself
and concerning companies building their business model on
retrieval and dissemination of information particles. For these
companies, anonymized information holds a certain value,
thus making the reliable and unambiguous identification of
data leaks of vital importance in order to take legal actions and
protect their core business. However, when considering sev-
eral versions of the same data anonymized with different
parameters, inference attacks can be used to identify and
remove the digital mark or to corrupt it to render it unrecog-
nizable and thus remove its value as a tracking mechanism.

In previous publications ((Schrittwieser et. al. 2011a) and
(Schrittwieser et. al. 2011b)) we presented an idea which
combines the anonymization of microdata (i.e., database re-
cords) and the generation of a fingerprint in a single step. In
fact, the fingerprint is generated intrinsically by anonymizing
the data, thus, our schema is based on the idea of extracting
fingerprints from the data structure.

In this paper we show how a systematic selection of
anonymization strategies prevents collusion attacks targeting
the anonymization level as well as the robustness of the
fingerprint. In particular, the core contributions presented in
this paper are:

1. Description and analysis of collusions against our concept
of k-anonymity based fingerprinting.

2. Protection of the anonymity level against collusions.
3. Achieving detectability of colluding attackers.
4. Presentation of an algorithm for constructing k-anonymity

based fingerprints incorporating these results.

Our solutions can be used to keep track of data breaches and
to attribute the breaches to the correct party. For example, a
large retailer may hand over data to five market research firms.
The data is aggregated so that individuals cannot be identified
but only groups of 50 people (k=50 in k-anonymity). If two
market research firms collude to reduce the level of privacy
protection and manage to identify people in a group 10 (k=10)
and this data is leaked, then the retailer will be able to identify
which two market research firms colluded.

It must be noted that the approach proposed in this paper
does not constitute a strategy for defending the underlying
anonymization technique against inference attacks utilizing
arbitrary external data, thus providing a flexible approach that
can be adapted to be used with a wide variety of other methods
for anonymization.

Background and related work

Watermarking and fingerprinting

Watermarking defines techniques that add visible or hidden
information (e.g., a copyright notice) to the target data. An
important characteristic of watermarking is that adding this
information modifies the data, either visible or invisible to
users. In contrast to watermarking, a consistent definition of
fingerprinting does not exist among the research community.
A common definition describes fingerprinting as a subtype of
watermarking where a unique mark (i.e., the fingerprint) is
added to each copy of the data. A second definition distin-
guishes fingerprinting fromwatermarking by the source of the
fingerprint: While in watermarking information is added, fin-
gerprinting uses intrinsic properties to uniquely differentiate
the copies. In both definitions, however, the uniqueness of the
fingerprint is the key concept that enables a data owner to
uniquely link a customer to a specific copy.

In past literature, research on watermarking and finger-
printing techniques was primarily focused on multimedia data
such as images or video files (Langelaar et al. 2000; Li et al.
2005; Fotopoulos and Skodras 2003; Hartung and Kutter
1999; Wu et al. 2004; Seo et al. 2005). Marking of non-
multimedia files such as database tables, is far less explored.
In 2002 Sion et al. (2002) presented a watermarking technique
for relational databases based on watermarking a numeric
collection, which is robust against several attacks such as
data resorting, subset selection and linear data changes.
Gross-Amblard (2003) discussed the problem of watermarking
databases, while preserving a set of parametric queries in a
specified language. Al-Haj and Odeh (2008) introduced a
watermarking concept for databases based on the insertion of
binary image watermarks in non-numeric multi-word attributes
of selected tuples. The idea of embedding a watermarked
image into a database was put forth by Zhang et al. (2004).
Liu et al. (2005) introduced a block oriented fingerprinting
approach for relational databases. In Lafaye (2007) a security
analysis concerning watermarking schemas was performed.
They analyzed the concepts in terms of uncertainty on the
location of watermarked parts of the database, i.e., the diffi-
culty for an attacker to identify the watermark. Another con-
cept of fingerprinting microdata was discussed by Willenborg
and De Waal (1996) and Willenborg and Kardaun (1999). In
both approaches, fingerprints are built from combinations of
identifying variables in the records.

Collusion-resistance, the inability of collaborating data
receivers to remove the mark by combining their versions, is
an important feature of watermarking and fingerprinting tech-
niques. In recent literature several collusion-resistant ap-
proaches were introduced. Su et al. (2002) presented a
collusion-resistant watermark for video data, furthermore, Su
et al. (2005) introduced an approach against linear frame
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collusions against watermarks in videos based on the imple-
mentation of a statistically invisible video watermark.
Collusion-resistant fingerprinting was the target of research
during the last decade as well. Trappe et al. (2003) investigat-
ed the problem of collusion-attacks and introduced a tree-
structured detection algorithm for identifying colluders of
fingerprinted multimedia files. Celik et al. (2003) proposed a
fingerprinting schema for multimedia files that renders collu-
sions ineffective by reducing the result of a collusion to low
quality and a related technique considering a combination of
digital watermarks and collusion secure fingerprints for digital
images in the medical sector was proposed in (Dittmann et al.
2000).

Anonymization of microdata

In 2002 Sweeney showed that even after removing attributes
that uniquely identify persons, e.g., the social security number,
from medical data, it is possible to identify 87% of all
Americans based on combining so-called quasi identifiers
(QIs) like birthdate, zip-code, sex and combinations of QIs
with external data (Sweeney 2002b). Thus, to prevent linking,
Sweeney introduced a new concept called k-anonymity which
is a widely adopted anonymization technique in academia
nowadays (Sweeney et al. 2002). Since nowadays critical
business information, especially considering customer infor-
mation or CDRs (call detail records), is typically stored in
databases, mechanisms for fingerprinting such structured
datasets are needed.

Definition All attributes in a data set that either themselves
(e.g., name) or in combination (date of birth, sex) can be used
to uniquely identify a person are called quasi identifiers
(Dalenius 1986).

Currently many publications (e.g., El Emam et al. (2009)),
remove identifiers like names that themselves identify a per-
son from the set of QIs and from the published data altogether.

Definition A set of records obeys the k-anonymity criterion
for a given k, when each record is indistinguishable from at
least k-1 other records with respect to all QIs.

Thus, the data is partitioned into equivalency classes,
where each class holds at least k elements. The level of
anonymity can be raised by increasing k, in practice however,
lower levels need to be used for providing significance for
meaningful analysis. Several improvements have been de-
vised for this concept, e.g., l-diversity (Machanavajjhala
et al. 2007), our approach works with them as well, thus we
describe it based on k-anonymity for reasons of simplicity.

Example Table 1 shows data containing two QIs that is obey-
ing k-anonymity (k=2).

Generalization patterns

The most prominent technique for achieving k-anonymity
rests upon generalizations of QIs: The granularity of the QIs
is reduced in all records until the criterion is fulfilled
(Sweeney, 2002a). Naturally, different generalization strate-
gies may be used. Figure 1 shows an example containing a set
of possible generalization levels for two QIs.

Definition Let n be the number of QIs. For each QI i=1,…, n
exactly one generalization level ai is chosen. Then the tuple
a:=(a1,…an) of generalization levels is called a generalization
pattern of the data set.

Example The data shown in Table 1 is anonymized with the
pattern (0,2) with respect to the generalization levels of Fig. 1.

Each pattern represents exactly one way of generalizing the
records of the set with respect to the strategies chosen for each
QI. Thus, it is possible to construct a lattice diagram showing
all possible patterns (see Fig. 2), the edges show direct gener-
alizations that are derived by generalizing one identifier by a
single level.

In addition to generalization, suppression of records, i.e.,
deleting a (small) subset of records from the set, is frequently
used for achieving k-anonymity. Being compatible with our
approach, its effects are omitted for the remainder of this
paper.

Fingerprinting with k-anonymity

In this section we describe our general approach based on our
work in (Schrittwieser et. al. 2011a) and (Schrittwieser et. al.
2011b), we included this chapter to achieve a comprehensive
view on the subject. Furthermore, many formal aspects were
not included in the previous works. The outline of the ap-
proach is based on the concept of k-anonymity for reasons of
simplicity, still it can be exchanged for enhancements like l-
diversity or t-completeness.

When distributing structured data to consumers, sensitive
information has to be obfuscated in order to prevent identifi-
cation of individuals. Still, especially in the case of medical
data, or data of financial value, the owner needs to be able to
detect information leaks, especially when the data constitutes
part of the business case of the company, as it is the case for

Table 1 Anonymized
data Birthday Sex Disease

1970 F Chest-pain

1970 M Short-breath

1970 F Obesity

1970 M Short-breath
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e.g., Facebook, or is used in order to apply anti-fraud mech-
anisms, financial clearing and network optimization utilizing
external institutions and experts as is commonly done in the
telecommunications industry. In our approach, intrinsic struc-
tural information of the data is used to form a fingerprint that
cannot be removed without reducing its value. More precisely,
the basic idea lies in the utilization of different anonymization
strategies, every consumer receives her set in a slightly differ-
ently anonymized form (see Table 2): For example, consumer
U1 receives set one, where strategy (0,2) is used (see Fig. 1)
and consumer U2 receives set two with data in the form (1,1).
In case the owner finds data like (M, 1970) in the wild, he is
able to identify U1 as source, since U2 would not be able to
provide this level of detail for QI “sex”. Figure 3 illustrates the
process of leak detection.

Data precision metrics (DPM) are used to find generaliza-
tion strategies with approximately the same information loss
to provide consumers with data of comparable value. To
achieve this, all strategies that lead to k-anonymized sets with
a given k are generated and the resulting information loss is
determined with a predefined DPM. The strategies are clus-
tered into equivalency classes according to their information
loss and a tolerance t (see Fig. 4). If no class holds enough
strategies, either t or k may be changed. It must be noted that
the resulting classes are strongly depending on the chosen
DPM which will largely depend on the specific use-case in
order not to destroy the significance of the data.

We have devised an algorithm for fingerprint generation
and leak detection in (Schrittwieser et. al. 2011b), which is
based on El Emam’s algorithm for calculating the optimal
solution (see El Emam et al. (2009)).

Collusion attacks

The combination of two or more data sets can be used to
subvert both, the anonymization as well as the fingerprinting
efforts (collusion attack), which was not taken into account in
the original approach proposed in (Schrittwieser et. al. 2011a).
Therefore, we analyze this threat and show which
anonymization strategies must be used to mitigate the
resulting effects. Chapter 4.1 is concerned with the analysis
of collusions against k-anonymity, whereas Chapter 4.2
proposes a strategy for identifying leaks. The reduction
of the anonymization level may not only result in rep-
utation loss of the data owner, it might even lead to
legal actions or reveal critical business information to
competitors. On the other hand, the subversion of the finger-
printing property of the scheme might lead to severe financial
loss for companies that base part of their business on the
trading of information, by making it publically available with-
out the possibility for the original data owner to hold the
leaking party responsible for the disclosure.

As a prerequisite we assume that two different generaliza-
tions of the same record set can be identified andmatchedwith
each other, e.g., by using non-QIs like medical diagnosis or
primary keys. This prerequisite constitutes a kind of
worst-case scenario, still, in the case of large amounts
of structured data, the ability to match records from differ-
ently anonymized sets must be taken into account to effec-
tively protect sensitive data.

Example Table 2 shows original data together with two dif-
ferent anonymizations, the fields “sex” and “birthday” were
identified as QIs. Both sets obey k-anonymity for k=2, still
the records can be matched by using the field”disease” which
was not identified as QI (and will not be generalized in order
not to reduce the data value).

Analysis of collusion attacks against the k-anonymity criterion

As a starting point for our analysis we formalize the
information gain inherent to knowing a specific pattern,
thus defining its hull. Using this, we formalize the information
gain through collusions and the possible consequences for
anonymization.

Definition Let A be a set of generalization patterns. The hull
of a pattern a0 is the set of all patterns that can be constructed
by lowering the granularity of QIs:

H a0ð Þ :¼ ai∈A
��� ai j ≥a0 j ;∀ j ¼ 1;…; n

n o
;

Person

Female Male

1970

Jan. Dec.

1 2

...

1 2 ......

1

iii

0

2 ......
Granular
ization

Original

Fig. 1 Different levels of generalization

(0, 0)

(1, 0) (0, 1)

(1, 1)

(1, 2)

(0, 2)

Fig. 2 Lattice diagram showing the generalization patterns
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where ai j ; a0 j denote the generalization levels the j-th QI of
the patterns ai and a0 respectively. Furthermore, ai j > a0 j

denotes that the generalization level of the j-th QI is higher
in the pattern ai than in pattern a0, i.e., that the granularity of
pattern a0 is higher than of ai with respect to the j-th QI. This
slight change in notation compared to the previous chapters is
needed since we will have to compare several patterns and
wanted to avoid double indices before.

In other words, the hull of a pattern contains all general-
izations that can be constructed by an attacker without addi-
tional information. Figure 5 shows an example lattice diagram
based on two QIs together with the hull of a pattern.

Corollary If a given pattern a0 obeys k-anonymity for a given
k, then all elements of the hull H(a0) obey k-anonymity for at
least the same k.

Proof The proof for this corollary is rather trivial:
Following the definition of the hull it holds true that
∀ai≠a0∈H a0ð Þ : ∃ j : ai j > a0 j

� �
∧ ∄ j : ai j < a0 j

� �
, i.e., for

all patterns in the hull H(a0) except for a0 itself at least
one QI has a higher generalization level, while none has
a lower one (this is derived directly from the definition of
the hull).

Following we want to analyze, what patterns can be
constructed by applying collusions against two different
known patterns a=(ai)i=1,…,n and b=(bi)i=1,…,n. By

using the definition of the hull, all patterns within the union
of the two hulls can be constructed trivially (Fig. 6 shows an
example with two QIs).

Furthermore, with the prerequisite given in the introduction
of “Collusion attacks”, the possibility of matching the same
record in differently anonymized sets, it is possible to con-
struct the pattern c=(min(a1,b1),…,min(an,bn)) and thus the
hull H(c)⊇H(a)∪H(b) (Fig. 7 shows an example involving
two QIs). We call c the minimal generalization pattern with
respect to the patterns a and b. The minimal generalization
pattern always exists because either, without loss of generality,
a∈H(b) trivially yielding c=b (and vice versa for b∈H(a)), or
not. In the latter case it is always possible to use the construc-
tion by calculating the minimal generalization levels with
respect to each QI. Since we implicitly assume a finite number
of QIs and the “>”-relation forms a well-ordering on the
generalization levels for each QI, the minimum can always
be calculated.

This can be further extended to the general case of a finite
number of generalization patterns:

Definition Let A={(ai)i=1,…,r} be a set of r generalization
patterns with respect to n QIs. We define the hull H(A) as
H að Þ , where a is the minimal generalization pattern with
respect to all ai∈A.

H Að Þ :¼ H a
� �

¼ H min a11 ;…; arð Þ;…;min a1n ;…; arnð Þð Þ

Since this is just an extension of the two-dimensional to the
general finite-dimensional case, the existence of the minimal
generalization pattern can be derived easily by using complete
induction.

Theorem Let A be a set of generalization patterns distributed
to consumers, each obeying the k-anonymity-condition for k.
Then the level of anonymity of the data cannot be reduced
beyond k by any selection of colluding consumers if and only
if the minimal generalization pattern of A at least obeys the
same k-anonymity-condition.

Proof In case the minimal generalization pattern does not
obey k-anonymity for k, a collusion of all consumers breaks

Table 2 Original data and two anonymized sets (k=2)

Original data (0,0) First set (0,2) Second set (1,1)

Name Sex Birthday Disease Sex Birthday Disease Sex Birthday Disease

Bob M 19.03.1970 Chest-pain M 1970 Chest-pain P 03.1970 Chest-pain

Dave M 20.03.1970 Short-breath M 1970 Short-breath P 03.1970 Short-breath

Alice F 18.04.1970 Obesity F 1970 Obesity P 04.1970 Obesity

Eve F 21.04.1970 Cancer F 1970 Cancer P 04.1970 Cancer

Person

Female Male

1970

Jan. Dec.

1 2

...

1 2 ......

1

iii

0

2 ......

(m, 1970)

Pattern

U1 (1, 1)

U2 (0, 2)

User

Fig. 3 Identifying the source of data leakage
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the anonymization. On the other hand, the minimal generali-
zation pattern contains the most granular generalization of
each QI with respect to the information given to all con-
sumers, i.e., it is not possible to generate another pattern from
the patterns owned by the consumers that has a higher gran-
ulated QI. Thus, in case the minimal generalization pattern
obeys k-anonymity, all other patterns derived by colluding the
consumers data sets obey at least the same criterion.

Identification of colluding attackers

Followingwe discuss how to choose generalization patterns to
identify the colluding attackers. For this, we need more pre-
requisites regarding our attacker model.

Prerequisites Like in the original fingerprinting approach, we
assume that attackers always try to generate the best possible
data set, i.e., they are not willing to reduce the granularity of a
QI in case a higher one is available to them (this is also
discussed in the original paper under “Limitations” and in
“Evaluation” “Robustness” in this paper). One reason for this
lies in the fact that every fingerprint (even without considering
collusions) can be removed trivially by generalizing all QIs to
the maximum generalization level (of course this includes
losing virtually everything in terms of quality). Furthermore,

we assume that consumers want to generate as good data as
possible through collusions. As an additional prerequisite, we
assume that attackers don’t know the patterns distributed to
non-colluding consumers. Please note that these prerequisites
are not needed in “Analysis of collusion attacks against the k-
anonymity criterion”.

Thus, the following targets need to be achieved by such a
solution to be defined as resistant to collusion attacks with
respect to our prerequisites:

1. All colluding partners shall be identified
2. No innocent partner shall be suspected wrongfully

The first observation is that any pattern aiwithin the hull of
a pattern a0 does not fulfill above requirements since a collu-
sion would go undetected. Generalization of this statement
leads us to the following theorem:

Theorem Let A={ai|i=1,…,r} be a set of patterns. Then A
constitutes a set of patterns resistant to collusions, if and only
if ai∉H(A\{ai}),∀i=1,…,r.

Proof (1) Let a0∈A be a pattern for which the precondition
holds true, i.e., a0∉H Ana0ð Þ ¼: H a0ð Þ , where a0 is the
minimal generalization pattern of A\a0. Thus follows that a0
has at least one QI a0 j of finer granularity than a0 , thus is not

constructible solely using the patterns in A\a0. If a set
anonymized with a pattern containing a0 j with the granularity

found in a0, it can be guaranteed that the user holding
pattern a0 participated in the collusion. If generalized
for all i=1…r, the first implication follows trivially. (2)
On the other hand, if all colluding partners shall be
identifiable, it must not be possible to construct a pat-
tern from the set containing the other patterns A ′=A\a0,
i.e., a0∉H A0ð Þ⇒∃a0 j : a0 j < ai j ;∀i≠0 . Since this must

hold true for all patterns ai, we can generalize that
∀l ¼ 1…r : ∃al j : al j < ai j ;∀i≠l trivially leading to ai∉
H(A\ai),∀ i=1,…,r.

Example Figure 8 shows three patterns a1,a2,a3. In case
of collusion of the partners holding data generalized
with a1 and a3, the partner having data of the form a2
could be accused innocently. A collusion of partner a2 and a3
would not be detected, partner a3 would still be deemed
trustworthy.

Above theorem states that every pattern in A has to
be more detailed than all the others with respect to at
least one QI and the attacker model outlined at the start
of this section.

Corollary The maximum number of independent patterns
is bound by the number of QIs, i.e., the number of

a n
o n

ym
ity

utility

minimum level
of anonymity

Fig. 4 Clustering anonymization strategies

(0, 0)

(1, 0) (0, 1)

(1, 1)

(1, 2)

(0, 2)

(2, 1)

(2, 0)

(2, 2)

(0, 3)

(1, 3)

(1, 4)

(0, 4)

(2, 3)

(2, 4)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

Fig. 5 The hull of a generalization pattern
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partners must be smaller or equal than the number of
QIs.

It must be noted that detecting colluding attackers
is completely independent from providing sets that
obey k-anonymity. Thus in real-life scenarios the num-
ber of possible colluding consumers that can be de-
tected while still obeying k-anonymity may be much
smaller.

Algorithm for a privacy preserving generalization
strategy

Based on the last section and the algorithm proposed in
(Schrittwieser et. al. 2011b), we propose an algorithm for
generating a privacy preserving solution. This solution is
needed to achieve both features mandatory in a fingerprinting
scheme targeting information business: An irreducible ano-

nymity level while maintaining enough stability in order to
identify colluding data customers.

Privacy preserving generalization strategies

Definition We define a set A consisting of r generalization
patterns as privacy preserving, when the solution is
conforming to the following properties:

1. Each pattern at least obeys the chosen anonymization
level k.

2. The pattern generated by colluding all r patterns of A at
least obeys k-anonymity for the same k.

3. In case of collusions, it is possible to identify the
participants.

4. All patterns ai∈A have the same quality with respect to the
chosen DPM and tolerance.

If several privacy preserving generalization strategies are
found it is necessary to choose a “best” solution. Several
measures can be used for defining this solution, e.g., lowest
average data loss, lowest difference in quality between the
patterns or highest number of patterns.

As discussed in “Analysis of collusion attacks against the
k-anonymity criterion”, a privacy preserving solution as de-
fined above can only be found in case the number of con-
sumers r is not greater than n, the number of QIs. Depending
on the actual sets and the anonymization level demanded, r
may even be significantly smaller than n to be able to provide
a generalization strategy that obeys the criteria mentioned
above. Thus, it may be useful to define a weaker definition
for privacy preserving generalization strategies that can be
obeyed more easily while still providing reasonable security.
However, we believe that typical databases contain enough
QIs for our approach to be practical.

The algorithm

The algorithm proposed in this section is based on El Emam’s
algorithm for calculating an optimal solution for the k-ano-
nymity problem of single sets (i.e., finding the pattern with
minimum information loss), combined with the results from
“Collusion attacks” concerning resilience against collusions.

1. All side parameters are defined: The anonymization
level k, minimum/maximum bounds for data loss lmin
and lmax, the DPM and the tolerance t. Furthermore, the
algorithm terminates in case n<r.

2. For each QI, a generalization strategy including the
different levels of granularity is defined.

3. The lattice diagram holding all possible patterns is
calculated.

(0, 0)

(1, 0) (0, 1)

(1, 1)

(1, 2)

(0, 2)

(2, 1)

(2, 0)

(2, 2)

(0, 3)

(1, 3)

(1, 4)

(0, 4)

(2, 3)

(2, 4)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

Fig. 6 The union of the hulls of two patterns
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(1, 3)
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(2, 3)
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(3, 1)

(3, 2)

(3, 3)

(3, 4)

Fig. 7 The hull generated by colluding two patterns
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4. A node at middle height is chosen and tested for k-
anonymity.

a. If not, all nodes below in the lattice diagram (includ-
ing the current one) are ruled out as possible solutions.

b. In case it does, all nodes above (including the current
one) are marked as possible solutions.

5. Step four is repeated for the remaining subgraphs. If all
nodes below were ruled out (4.a), one QI of the node
used in step 4 is increased by one and used as input in
step 4. In case of 4.b, the same approach is followedwith
one QI decreased. This step is repeated for all remaining
subgraphs until all nodes in the original subgraph are
evaluated.

6. In case no subgraph is left, another still unevaluated
node at middle height is chosen and the algorithm pro-
ceeds with step four until all nodes are evaluated.

7. For each node marked as possible pattern, the DPM and
the actual k is calculated. All patterns with a precision
outside lmin and lmax are removed.

8. The remaining patterns are clustered into equivalency
classes according to their quality and the tolerance t.

9. For each resulting class, the minimal generalization pat-
tern is generated. Classes resulting in a pattern not obey-
ing k-anonymity are removed from the possible
solutions.

10. For each remaining class, the ability of detecting collud-
ing attackers is tested according to “Identification of
colluding attackers” and eventually removed from the
set of possible solutions.

11. If the set of possible solution is empty, t, lmin and lmax are
relaxed with respect to a predefined strategy. The algo-
rithm then proceeds with step seven in case t≤lmax (in
case t≥lmax, t can obviously be set to lmax without losing
any solutions. The algorithm then proceeds with step
seven too).

12. If more than one class remains, the best solution is chosen
(see Privacy preserving generalization strategies).

13. The data sets for the consumer are generated.

DPMs and maximum levels (Step 1) The algorithm should
provide approximately the same level of precision to all con-
sumers. Still, it may not be possible to find a generalization
strategy with r patterns possessing exactly the same quality.
Thus, the tolerance parameter t is defined as the maximal
tolerated difference in quality inside an equivalency class,
i.e., t≥(maxi(M(ai))−minj(M(aj)), where M is the DPM used.
The parameters lmin and lmax hold bounds for the minimal and
maximal data precision of a valid solution.

Eliminating nodes (Step 4) Since we need the set of all pos-
sible solutions to construct the equivalency classes (this is a
major deviation from the algorithm outlined in (El Emam et al.
2009)), the nodes holding less granular patterns cannot be
removed from the set of possible solutions in case of 4.b.

Clustering the solutions (Step 8) Step eight clusters the
patterns into classes by their quality and with respect
to the tolerance t. Patterns may (and with a higher t will
most likely be) inside several such equivalency classes,
especially since all subsets of clusters are valid classes
too. Classes holding less than r patterns are removed
from the list of solutions.

Finding a privacy preserving solution (Steps 9 and 10) In
these steps, the results from “Collusion attacks” are incorpo-
rated to find a privacy preserving solution as defined in
“Privacy preserving generalization strategies”. Step nine guar-
antees that colluding all patterns of the resulting generalization
strategy does not result in a pattern that fails the k-anonymity
criterion, while step ten guarantees the identification of each
colluding consumer.

Relaxing the side parameters (Step 11) In case no solution for
a privacy preserving generalization strategywith respect to the
parameters t, lmin and lmax is found, the algorithm tries to relax
these parameters and proceeds with step seven to find a
privacy preserving generalization strategy with lower require-
ments. The strategy for relaxing these parameters must be
defined by the user beforehand. Choosing suitable strategies
depends very much on the actual data and requirements and is
not part of this work.

Choosing the best solution (Step 12) Several strategies may
be chosen for selecting the best privacy preserving
strategy: “Privacy preserving generalization strategies”
gives some ideas on reasonable choices for comparing
the solutions.
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(1, 1)
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Fig. 8 Collusion example
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In the course of the paper we always demonstrated our
approach with respect to the common concept of k-anonymity.
In case other, related, concepts like l-diversity or t-complete-
ness are used, the check for compliance of the pattern in step 4
has to be adapted to resemble the new criteria.

Applicability of the algorithm

To demonstrate the applicability of the approach, we provide a
small example. Due to the regulations regarding the paper
length we will omit unnecessary intermediate results.

Step 1: Chose side parameters: The anonymization level k=
2, lmin=0, lmax=4 and t=0 using the Samarati Metric
(SM) (see (Samarati, 2001)). Furthermore we want
to distribute the fingerprinted data to three con-
sumers. The original data can be found in Table 3
(the attributes ID, birthday, ZIP-Code and sex, with
generalization level 0, i.e., the columns with “0” in
the second row).

Step 2: For the QIs birthday, ZIP-Code and sex the following
generalization levels are defined:

& Birthdate: exact to: day, month, year, decade
& ZIP-Code: sub district (4 digits), district (3 digits),

inner/outer city (2 digits), city (1 digit)
& Sex: female (F)/male (M), person (P)

See Table 3 for all generalizations.

Step 3: The lattice diagram holding all possible generaliza-
tion patterns is calculated.

Step 4: Since birthday and ZIP-Code both possess 4 gener-
alization levels (0,…,3) and sex possesses 2 levels
(0,1), the maximum height of the lattice diagram is 7
(3+3+1), the minimal 0 (0+0+0), thus all levels
with a combined sum of generalization levels of 4
are at middle height (since we use the Samarati
Metric for measuring the data precision, the definition
of the height in the lattice diagram and the data loss is
equal. This does not hold for other DPMs though).
In our example seven nodes with height 4 exist.

A node at middle height is chosen at random and
checked for compliance with k-anonymity for k=2.
For example we choose the node a0=(0,3,1) which
doesn’t obey the criterion (see Table 3). Thus all
nodes (x,y,z) with x≤0, y≤3 and z≤1 are removed
from the set of possible generalization patterns (see
step 4.a in the algorithm).

Step 5: Step four is repeated for the remaining subgraphs,
i.e., a node that can be derived by lowering the
granularity of one QI in a0 is constructed and used
as input for step 4, e.g., (1,3,1). This node fulfils k-
anonymity, thus all nodes (x,y,z) with x≥1, y≥3 and

z≥1 are added to the list of possible generalization
patterns. This is done for all remaining subgraphs.

Step 6: The steps four and five are repeated until all nodes at
middle height are evaluated. Table 4 shows the set of
possible generalization patterns before applying the
bounds for the data precision.

Step 7: All patterns with data loss higher than 4 are removed,
for all remaining nodes the actual k is calculated.

Step 8: The remaining generalization patterns are clustered
with respect to the tolerance level t=0. Table 5 gives
an overview on the resulting clusters (in order to keep
this example well-arranged, Table 5 already contains
the results from steps nine (the minimal generation
pattern a ) and the clusters are grouped by their data
loss and the number of patterns respectively).

Step 9: For each cluster, the minimal generalization pattern
is constructed and testedwhether it obeys k-anonym-
ity. Due to the simple metric, small tolerance and
small data set, the minimal generalization pattern for
each cluster is the same in this example.

Step 10: All clusters that do not provide the ability to detect
colluding attackers are removed from the sample,
reducing the set of possible results to the pattern
with ID 11 (highlighted in Table 5).

Steps 11 and 12: The side parameterst, lmin and lmax could be
lowered to generatemore solutions, whichwe
omit in this example. The data is anonymized
with the resulting patterns from the cluster
with ID 11 and distributed (see Table 6).

Evaluation

Number of possible data consumers For our approach it is
vital that every consumer receives the data anonymized with a
unique, non-reusable pattern. In general, the number of pos-
sible fingerprints is heavily depending on side-parameters like
the anonymization level, the minimal and maximal allowed
data quality and clustering tolerance, as well as on the data
itself. Furthermore, since the approach requires a privacy
preserving generalization strategy, the number of possible
patterns is reduced drastically and can be limited to Fopt≤n.
Still, e.g., considering call-detail-records (CDRs) in
interconnection-billing or anti-fraud systems for telecommu-
nication providers, the typical data set possesses much more
QIs (more than 50 for a typical ICB-system) than possible
consumers (usually less than 10), thus rendering this approach
perfectly feasible.

Robustness of the fingerprints and the anonymization Another
important evaluation criterion lies in the robustness of the
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fingerprint against tampering and removal. Since the finger-
print is constituted by the intrinsic structure of the data, the
only way to remove such fingerprints lies in changing the data
structure, i.e., changing the underlying anonymization pattern.
In order to hide, the consumerwould need to find a pattern that
is either distributed to another consumer (which is impossible
when using a privacy preserving generalization strategy), or
that at least lies in the hull of another distributed pattern. To
achieve this, the attacker must (i) know the pattern used for
another consumer and (ii) know the generalizations levels of
the identifiers. At any rate, the value of the leaked data
will be drastically reduced, since the attacker is only
able to reduce the granularity of known data in order to
hide the pattern. Concerning the robustness of the
anonymization, the approach proposed in Chapter 4.1 ensures
that the k-anonymity criterion cannot be broken by inferencing
an arbitrary selection of the fingerprinted data sets. Still,
attacks against the concept of k-anonymity itself, especially
considering inference attacks involving external data, may
lead to unwanted disclosure.

Example Let A and B be two consumers, where A gets
data anonymized with (3,1) and B with (1,3). Assuming
A knows the pattern for B and the generalization levels
for each QI, the best unidentifiable pattern that A can
generate would be (3,3).

Validity of the algorithm For the practical applicability of the
approach an algorithm that is able to construct the fingerprint
is needed. Thus we will show that the algorithm proposed in
Chapter 5 terminates and that all possible privacy preserving
solutions are generated:

Steps 1 to 3 in the algorithm set the side parameters and
generate the generalization levels and the lattice diagram

which terminates trivially in case of a finite number of QIs
and possible generalizations. The steps 4 to 6 iterate through
all nodes in order to decide if they obey k-anonymity. In every
invocation of step 4, nodes are either marked as possible
patterns or removed from the evaluation. In both cases, these
nodes will not be chosen by steps 5 or 6 as input node for step
4, thus guaranteeing that each node is evaluated at most once.
Thus this cycle terminates after a finite number of iterations.
Step 7 terminates trivially, step 8 generates all possible clus-
ters from the set of possible patterns which is again finite.
Since the minimal generalization pattern always exists (see
Chapter 4.1), step 9 and 10 terminate too.

Furthermore, the algorithm needs to generate all solutions.
Lets assume one solution is missing, since the solutions are
generated by clustering all patterns obeying k-anonymity into
equivalency classes, it follows trivially that at least one pattern
a0 must bemissing. Since the lattice diagram calculated in step
3 holds all possible patterns, a0 must have been lost in the
loops implemented in steps 4 to 6. This part is functionally
equivalent to the algorithm proposed in (El Emam et al. 2009)
and proven to be complete: For each middle node, either the
lower subgraph (including the middle node) can be marked as
possible pattern, or can be ruled out. For each middle node the
algorithm cycles through the remaining subgraph and the
process is repeated until no unevaluated nodes are left.

Conclusion

In this paper we introduced an algorithm for collusion-
resistant anonymization and fingerprinting of microdata in
one single step based on the very popular and widely used
concept of k-anonymity. Both features are often demanded

Table 3 All generalization levels
for the chosen data set Birthday ZIP-code Sex

ID 0 1 2 3 0 1 2 3 0 1

1 31.05.1970 05.1970 1970 70s 1042 104 10 1 F P

2 25.04.1970 04.1970 1970 70s 1062 106 10 1 M P

3 16.05.1970 05.1970 1970 70s 1041 104 10 1 F P

4 08.04.1970 04.1970 1970 70s 1062 106 10 1 M P

Table 4 Possible generalization
patterns Pattern SM k Pattern SM k Pattern SM k Pattern SM k

(1,1,0) 2 2 (1,3,0) 4 2 (2,2,0) 4 2 (3,1,0) 4 2

(1,1,1) 3 2 (1,3,1) 5 2 (2,2,1) 5 4 (3,1,1) 5 2

(1,2,0) 3 2 (2,1,0) 3 2 (2,3,0) 5 2 (3,2,0) 5 2

(1,2,1) 4 2 (2,1,1) 4 2 (2,3,1) 6 4 (3,2,1) 6 4

(3,3,0) 6 2 (3,3,1) 7 4
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when exchanging sensitive data and thus a key requirement in
many business scenarios, e.g., the exchange of interconnection
information between telecommunication providers or informa-
tion trading. Based on our previous work, we evaluated the
effects of colluding data consumers towards the stability of the
anonymization and the robustness of the fingerprints and for-
malized them. This resulted in clear formal criteria on the
characteristics of collusion-resistant fingerprinting strategies
and allowed the selection of optimal strategies that guarantee
a reasonable protection without needless reduction of data
value. The algorithm we proposed based on these characteris-
tics uses a strategic selection of different generalization pat-
terns for achieving k-anonymity which provably cannot be
combined to a set that is below a specified anonymity level.
We further showed that our algorithm generates sets where
colluding attackers can be identified with respect to a realistic
attacker model. The approach was evaluated regarding its
practical applicability based on the key factors robustness,
validity and completeness, as well as the number of possible
consumers. Due to the theoretical nature of the approach the
actual applicability highly depends on the underlying data and
the anonymization level. To indicate its practical applicability,
we gave an example using a very small and limited data set
while still being able to generate a reasonable solution. In case
of targeting real life applications, e.g., in the telecommunica-
tions industry, we expect the approach to yield even better
results due to data sets containing far more attributes.

We thus conclude that it is possible to construct fingerprints
based on the intrinsic structure of an anonymization procedure
that allow for the unique identification of leaks with respect to

the outlined prerequisites. Furthermore we can guarantee that
this distribution of several, differently anonymized sets based
on the same original data does not pose a threat to the sensitive
information contained therein. As the approach outlined in
this work is not directly based on a specific anonymization
strategy, it can be easily generalized to use other methods such
as l-diversity (Machanavajjhala et al. 2007) or t-closeness (Li
et al. 2005). We outlined this in the course of the paper,
especially considering the applicability of our algorithm as
given in “The Algorithm”.

As already outlined in the introduction, we see
many possible applications for this approach in situations
that are omnipresent in modern electronic markets.
Telecommunication and other network providers may involve
several research institutes or companies to analyze (e.g., traffic
based) user behavior and/or network utilization e.g., for opti-
mization purposes. By using our algorithm any unwanted
disclosure due to uncontrolled information exchange and col-
lusion between these institutions can be identified. Another
prime example for utilizing the approach outlined in this work
relates to anti-fraud mechanisms based on independent data
streams handling connection data, thus including sensitive
user information. Furthermore it has to be kept in mind that
even anonymized data constitutes a business asset for many
companies targeting modern electronic markets. As modern
society is increasingly getting aware of the sensitivity of
private information, IRBs and ethical commissions require
mechanisms for reliable protection. Whenever data is proc-
essed or stored and aggregate data suffices, it makes sense to
only work with the aggregate data and to only transfer this
data to collaborators. Our scheme further improves this pro-
cess by adding identifying watermarks to the data that allow
discovering collusion and correctly attributing the violations
to the parties involved. We believe that the contributions in
this paper will support scientists conducting research related
to electronic markets by allowing them easier access to aggre-
gate data to base their work on.

For our future work, we aim at researching the impact of
different data precision metrics, especially regarding the sci-
entific value of data sets. Furthermore we will explore differ-
ent relaxed definitions for privacy preserving generalization
strategies and implement the concept for the MySQL DBMS.

Table 5 The constructed clusters

ID SM #
patterns

Patterns
a

k for
a

1 3 3 (1,1,1),(1,2,0),(2,1,0) (1,1,0) 2

2 4 5 (1,2,1),(1,3,0),(2,1,1),(2,2,0),(3,1,0) (1,1,0) 2

3 4 4 (1,3,0),(2,1,1),(2,2,0),(3,1,0) (1,1,0) 2

4 4 4 (1,2,1),(2,1,1),(2,2,0),(3,1,0) (1,1,0) 2

5 4 4 (1,2,1),(1,3,0),(2,2,0),(3,1,0) (1,1,0) 2

6 4 4 (1,2,1),(1,3,0),(2,1,1),(3,1,0) (1,1,0) 2

7 4 4 (1,2,1),(1,3,0),(2,1,1),(2,2,0) (1,1,0) 2

8 4 3 (1,2,1),(1,3,0),(2,1,1) (1,1,0) 2

9 4 3 (1,2,1),(1,3,0),(2,2,0) (1,1,0) 2

10 4 3 (1,2,1),(1,3,0),(3,1,0) (1,1,0) 2

11 4 3 (1,2,1),(2,1,1),(2,2,0) (1,1,0) 2

12 4 3 (1,2,1),(2,1,1),(3,1,0) (1,1,0) 2

13 4 3 (1,2,1),(2,2,0),(3,1,0) (1,1,0) 2

14 4 3 (1,3,0),(2,1,1),(2,2,0) (1,1,0) 2

15 4 3 (1,3,0),(2,1,1),(3,1,0) (1,1,0) 2

16 4 3 (1,3,0),(2,2,0),(3,1,0) (1,1,0) 2

17 4 3 (2,1,1),(2,2,0),(3,1,0) (1,1,0) 2

Table 6 The distributed data sets

Data set 1 Data set 2 Data set 3

Birthday ZIP-
code

Sex Birthday ZIP-
code

Sex Birthday ZIP-
code

Sex

05.1970 10 P 1970 104 P 1970 10 F

04.1970 10 P 1970 106 P 1970 10 M

05.1970 10 P 1970 104 P 1970 10 F

04.1970 10 P 1970 106 P 1970 10 M
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While this paper focuses on the concept of k-anonymity as
anonymization strategy, we plan to apply our method on other
techniques for privacy protection.
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