
PeekaTorrent : Leveraging P2P Hash Values for Digital Forensics

Sebastian Neunera, Martin Schmiedeckera, Edgar R. Weippla

aSBA Research, Vienna, Austria

Abstract

Sub-file hashing and hash-based carving are increasingly popular methods in digital forensics to detect files on hard
drives that are incomplete or have been partially overwritten or modified respectively. While these techniques have been
shown to be usable in practice and can be implemented efficiently, they face the problem that a-priori specific “target
files” need to be available. While it is always feasible and, in fact, trivial to create case-specific sub-file hash collections,
we propose the creation of case-independent sub-file hash databases. To facilitate hash databases which can be publicly
shared among investigators, we propose the usage of data from peer-to-peer file sharing networks such as BitTorrent.
Most of the file sharing networks in use today rely on large quantities of hash values for integrity checking and chunk
identification, and can be leveraged for digital forensics.

In this paper we show how these hash values can be of use to identify possibly vast amounts of data and thus present
a feasible solution to cope with the ever-increasing case sizes in digital forensics. While the methodology is independent
of the used file sharing protocol, we harvested information from the BitTorrent network. In total we collected and
analyzed more than 3.2 billion hash values from 2.3 million torrent files, and we discuss to what extent they can be used
to identify otherwise unknown file fragments and data remnants. Using open-source tools like bulk extractor and hashdb,
these hash values can be directly used to enhance the effectiveness of sub-file hashing at large scale.

Keywords: sub-file hashing, hash-based carving, file whitelisting, p2p file sharing

1. Introduction

One of the current problems in digital forensics is the
vast amount of data to be analyzed, as hard drives with 8
terabytes capacity are readily available and the number of
devices per person increases steadily. Both are factors for
which the current forensic process model does not scale
well [1]. Acquisition of large data drives can take days,
and even though optimization techniques were recently
introduced in the literature, e.g., sifting collectors [2] or
file-based deduplication [3], they are not yet used in prac-
tice on a larger scale. Slack space, the general availability
of counter-forensic tools and the increasing importance of
RAM content for analysis further challenge the current
boundaries of digital forensics. While file whitelisting is
a common approach to reduce the number of files to be
investigated, it is limited in numerous ways: for one, there
is currently just one large corpus of hash values which is
publicly shared – the NIST National Software Reference
Library, containing 43 million file hashes. Secondly, these
file hash values rely on hashing an entire file, and are thus
unusable to identify files that are partially modified, or files
which have been deleted respectively partially overwritten.

Email addresses: sneuner@sba-research.org (Sebastian
Neuner), mschmiedecker@sba-research.org (Martin
Schmiedecker), eweippl@sba-research.org (Edgar R. Weippl)

To cope with these problems, we present peekaTorrent,
a methodology to identify files and file fragments based
on data from publicly available file-sharing networks. It is
based on the open-source forensic tools bulk extractor and
hashdb and can be readily integrated in forensic processes.
It improves the current state-of-the-art on sub-file hash-
ing [4] twofold: for one the hashed sub-file parts are larger
than pure sector-based hashes, and thus less prone to false-
positives for files that share common data segments. Sec-
ondly, we solve the problem that an a-priori sub-file hash
database is required by creating one that can be shared
openly. Lastly, no participation in file-sharing activity is
needed as the torrent metadata or “metainfo”, which is
stored in the torrent file, already contains all the neces-
sary information including the sub-file hash values. This
information can then be used for file and fragment identi-
fication and effective file whitelisting, as well as for other
use cases. As such, the contributions of this paper are as
follows:

• We present a scalable methodology to identify files
and file fragments based on sub-file hashing and P2P
file sharing information.

• We collect and analyze more than 2.3 million torrent
files, rendering up to 2.6 petabyte of data identifiable
using that information.

• We identify several use cases for file (fragment) iden-

Preprint submitted to Elsevier July 27, 2016



tification in the context of both file-whitelisting and
blacklisting with that data.

• All obtained data and created source code is avail-
able online at https://www.peekatorrent.org.

The remainder of this paper is structured as follows:
Section 2 provides the necessary background for this paper.
Section 3 describes our idea of using sub-file hash values
from peer-to-peer file sharing networks in the forensic pro-
cess, and discusses different use cases where this data can
be of value. Section 4 describes our collected data, while
the possible benefits are described in Section 5. Section 6
discusses limitations and future work, before we conclude
in Section 7.

2. Background

Digital forensics relies on a multitude of information
sources to gain knowledge, ranging from hard drives and
file system artefacts [5] to the dynamic content of RAM [6]
to the user files and programs that store information in
log files, SQLite databases, or digital images. This leaves
the investigator with a broad spectrum of places where
to look, where each investigation depends in its specific
context and questions to be answered. The general pro-
cess outline has been defined in both [7] and [8], whereas
a great number of current challenges has been discussed
in [1]. Another problem is the increasing spectrum of used
devices, ranging from smartphones [9] to smart TVs to nu-
merous other types of devices. Most pressing, however, is
the general problem that the average case size is constantly
increasing [10]. For one this is due to increasing storage
capacities of hard drives, with modern hard drives being
able to store many terabytes of data that need to be an-
alyzed with respect to the traditional approach of digital
forensics. Secondly, cloud storage services commonly push
information automatically from device to device, like pic-
tures taken or files edited, leading to duplicate files across
devices. Lastly, the density of digital devices surrounding
us is increasing, which is also true for the average number
of devices per user.

In recent years, numerous forensic models and publica-
tions were specifically targeted to reduce the manual work
in investigations with a large amounts of data. Among
them is the concept of forensic triage, which was initially
presented in 2006 [11] and quantified more recently in [10]
quantified regarding the expected amount of computational
power needed. The basic idea is that instead of analyzing
all the data there is, only a specific subset of files which
are known to be of interest are inspected. Only recently
the concept of sifting collectors was proposed [2] in which
the amount of data to be analyzed is reduced by ignoring
known areas on hard drives that are of no particular inter-
est, while still retaining the ability to create bit-identical

images if needed. Our approach is different in that it ex-
tends the traditional process of forensic imaging by iden-
tifying large volumes of both files and file fragments to
be either of particular interest (blacklisting), or not of any
interest at all as the file is a known, good file (whitelisting).

Both bulk extractor and hashdb are two very powerful
open-source tools which were published by Simson Garfinkel.
Bulk extractor [12] recursively scans hard drive content,
and is able to retrieve information in compressed as well
as embedded files like PDFs. It is extremely fast and can
use all available cores on a machine to parallelize the task
at hand. Hashdb [4] uses efficient algorithms to build a
lookup database of hash values much faster than any re-
lational or NoSQL-style database system. It can reliably
identify the presence of a given list of target file hash val-
ues, and builds on previous work that showed that there is
only a small percentage in shared file content on the sector
level [13].

3. P2P Networks for Hash Values

The basic idea of our approach is to extend the existing
knowledge and applicability on sub-file hashing and hash-
based carving by leveraging vast amounts of publicly avail-
able hash values. While hashing was previously mainly
used to uniquely identify entire files of arbitrary size, our
concept presented here extends this to hashing variable-
sized sub-file portions. Sub-file hashing [13] as well as
hash-based carving [14] allow investigators to search for
file fragments by hashing either each hard drive sector or
aligned blocks of data. This can also be used if there is
not enough time available to prove stochastically the pres-
ence or absence of specific files, e.g., in well below an hour
and with only a relatively small error margin. We extend
these concepts by mapping sub-file hashes with data from
peer-to-peer file sharing networks with variable block sizes,
both usable for black- and whitelisting of large volumes of
files as well as sampling. We thus extend existing tools
and concepts, such as bulk analysis of forensic media us-
ing bulk extractor [12] and hashdb[4].

Peer-to-peer (P2P) file sharing applications and proto-
cols rely heavily on hashing for integrity and as a founda-
tion for parallelization, i.e., simultaneously downloading
multiple parts of a file from different users for increased
performance. While we used the popular BitTorrent file
format for our evaluation, in many cases any application
that uses sub-file hashing is directly usable: Dropbox for
example, a popular cloud storage service, hashes blocks
of 4 megabytes using SHA-256 and stores them in a local
SQLite database [15, 16]. These sub-file hash databases
can also be privately created and maintained, for exam-
ple based on files and information within a company or
an investigative bureau, but across cases. Our particular
contribution is to propose that these pre-computed hash
lists can be used to identify files and sub-files on hard

2



drives. With millions and millions of torrent files publicly
shared online, peekaTorrent uses the fact that each and
every torrent file indexes all files and also contains their
corresponding SHA-1 hash values. For efficiency, the files
are split into equally sized pieces or chunks, solely depend-
ing on the overall size of information to be shared [17] in
powers of 2 starting with 16kb. Thus, by splitting the hard
drives into equally sized chunks and hashing them using
SHA-1, it becomes a matter of comparing hash values to
possibly identify hard drive content without relying on file
system metadata. Also, this information is freely available
without participating in any form of file sharing activities,
but leveraging the initial seeders computing power in hash-
ing any form of content.

Torrent files have a rather simple structure [17]: they
contain generic information, e.g., when the torrent was
created, which software was used and the specific informa-
tion of the data to be shared. This includes the size of
the blocks, their SHA-1 hash values, and how many there
are. During the creation of the torrent file, all containing
files are concatenated, and this stream of data is then split
into equally sized blocks (except for the last one which does
not need to be aligned with the block length). By default,
the data is split into 256-kilobyte blocks, but the user can
specify arbitrary block sizes during the creation of the tor-
rent file. The size of the torrent file depends mostly on
the number of blocks, because it contains an SHA-1 hash
value of 20 Bytes for each block. To uniquely identify the
torrent for clients and trackers, an SHA-1 hash value is
calculated over a subset of the torrents’ stored informa-
tion: the so-called info hash. Figure 1 shows a graphical
representation of the file format as well as an example from
a specific torrent file. The dashed line is the information
which is hashed to obtain the info hash value, while for
each file the dictionary files contains the relative path and
the length of the file. Piece length is the block size in which
the data is split (in the order specified in the files field),
and the field pieces contains the concatenated SHA-1 hash
values.

3.1. Problem of Non-Aligned Files

One of the problems when using torrent files is the way
these files are created: prior to hashing all chunks, the files
are concatenated (in arbitrary order). If a chunk contains
parts of two files, we cannot use the resulting hash value.
This means that only files which are larger than the piece
length can be identified, thus biasing the general applica-
bility towards large files (which is obvious when looking
at content from file sharing networks). Figure 2 shows a
representation of block hashes in torrents, with the same
content as Figure 1: the SHA-1 value of the first piece is
usable, as codec.exe spans into the second piece. As such,
it can be used to uniquely identify that this file has been
stored on the hard drive by hashing any hard drive with

the same hashing window as the piece length of the tor-
rent. This can be readily integrated into bulk extractor,
which already facilitates the necessary requirements by de-
fault. If the first file is longer then in our example, and
spans, e.g., n pieces in the torrent file, any of these areas on
disc can identify the file as long as the data is consecutively
stored somewhere. The second piece in Figure 2 is not us-
able for our proposed methodology, as it contains content
from both the first and the second file. While it could
theoretically happen that the operating system allocates
the information in such a way that the hash value could
be used, this is not necessarily the case as the files can be
stored at different locations on the hard drive and in dif-
ferent orders. The third piece (i.e., the second piece that
contains content from movie.mkv in our example) is usable
if the missing length of the file in the beginning is used for
offset hashing – it is no longer the piece length which can
be used for chunk hashing during acquisition, but rather
aligned to the hard drive sectors, which tremendously in-
creases the hash values to be calculated during analysis.
Again, this is already integrated in bulk extractor and the
problem remains CPU-bound, which means it is solvable
if enough computation power is at hand. The hash value
for the last piece is unusable, as it must not be of the same
length as the others [17], i.e., there is no padding for tor-
rent files.

In the following, we discuss the different use cases where
such a vast amount of file fragment information can be of
use in the particular context of digital forensics. Other
protocols are probably equally suitable, but have not been
investigated in detail for this work, e.g., Kademlia [18] as
well as distributed hash tables in general [19] often use
SHA-1 hash values for searching.

3.2. Use Case 1: File Whitelisting

File whitelisting is a well-known technique to identify
files that are common and of no particular interest during
an early phase in digital investigations. One of the most
commonly used databases of hash values is the NIST Na-
tional Software Reference Library (NSRL) reference data
set1 which comprises at the time of writing of more than 43
million file hash values. Most of these hash values include
binaries and program libraries for software on Windows,
whereas our collected data contains information of rele-
vance independent of the used operating system, and of
much larger file size. While NIST also releases block hash
values for the first 4k and 8k of about 13 million files, our
dataset is able to identify popular files like movies, TV
episodes or other commonly shared files on file sharing
networks, even if they are deleted and some sectors were
already overwritten by the file system.

1Online at http://www.nsrl.nist.gov/

3



Figure 1: File content in a torrent file

Figure 2: Chunk hashes

3.3. Use Case 2: File Blacklisting

File blacklisting is used to find and identify files of par-
ticular interest for a specific investigation. While in our
evaluation the usability of our data is mostly limited to
cases of copyright infringement, it is still of use for in-
vestigations in general and might lead to new insights.
Nonetheless, building a private sub-file hash database is
always a possibility if a script can be used to hash blocks
of arbitrary length of, e.g., all e-mail attachments in a com-
pany, all files on a Sharepoint server or source code within
a company. This could also include outright illegal mate-
rial like pictures and videos related to child pornography.
Instead of using perceptional hashing [20] – as used by
online services like Twitter and Facebook to detect such
files [21] – sub-file hash values of variable block length can
further identify files like these without access to such per-
ceptionally hashed data.

3.4. Use Case 3: File Fragment Identification

By default, file systems in modern operating systems
do not overwrite files once they are deleted, but rather
delete the index pointing to the data or mark the affected
storage areas as free-to-use [5]. Depending on the operat-
ing system and the file system in use, as well as the actual
user behavior, it is usually unpredictable when a specific

area will be overwritten. Both methods in our approach
described so far work for partially overwritten files, as they
do not rely on file system metadata. This was already ar-
gued in [13] for sector hashing. As long as the data on a
disc is not completely overwritten and leaves at minimum
the piece length of the torrent files untouched, peekaTor-
rent will find it.

3.5. Shifting the Bottleneck

Considering these three use cases, the overall perfor-
mance scales linearly with the number of available CPU-
cores, similar to bulk extractor. Sub-file hashing can lever-
age multi-core CPUs and scales with the number of avail-
able cores. As the file system metadata is not needed,
there is also no need for disk seek operations. All the data
from the hard drive can be split in constantly sized chunks,
and processed recursively using the hashdb scanner within
bulk extractor.

4. Evaluation

To evaluate our methodology we implemented all the
steps of the processing outline described above. This in-
cludes software we wrote to collect torrent files from the In-
ternet and tools to process and use them within the context
of a forensic investigation, see https://www.peekatorrent.
org. This section shows and underlines the applicability of
the proposed approach and the methods applied for gath-
ering torrents on a large scale.

4.1. Data Collection

Collecting a large number of torrents from the Internet
is non-trivial, as new torrents are added constantly and
older torrents become unavailable once they are no longer
shared.

Only a minority of websites hosts the torrent files con-
taining all the sub-file hash values themselves, but rather

4



rely on sharing magnet links that point to the informa-
tion in the completely decentralized distributed hash tables
(DHTs) [22].

To collect torrent files we focused on the following three
main sources: (i) The Pirate Bay2, (ii) kickassTorrents3,
and (iii) various data dumps, e.g., from openBay4. For
(i) and (ii) we implemented a crawling framework which
recursively crawls and parses both websites for every mag-
net link listed there. After that we extracted the torrent
info hashes from the magnet links and constructed a down-
load link for the torrent cache website https://torcache.
net/. For (iii) and those torrent files which weren’t hosted
at torcache.net we implemented a DHT lookup service,
similar to the one Wolchok et al. used in their work [23].
The crawlers for (i) and (ii) were crawling the entire web-
sites, including all subcategories to get the full archive for
a specific point in time (January 2016 in our case).

From the various openBay dumps we were able to ex-
tract close to 30 million info hashes. The dataset from
isohunt contained 7.8 million info hashes, while the com-
plete archive for openBay included 23.5 million hashes.
Both data sets were created after the police raid against
Pirate Bay in December 2014 caused the website to be
shut down. Previously generated data sets also include
one notable xml dump of the Pirate Bay from February
2013 (about 2 million info hash values). Not all of these
files were retrievable using the DHTs, in fact only a small
fraction and in particular only newer files. The biggest
fraction of torrent files we collected came from kickassTor-
rents and torcache.net, as torcache.net is used by default
to distribute torrent files on behalf of kickassTorrents. So
far we have collected 2.3 million torrent files, which we
share with the reviewers and will later release them pub-
licly. Our data collection is still going on, and as such
the data we collected can only be considered a snapshot
in time. Further processing was then done using Python
as well as hashdb, which was used to efficiently store and
query the sub-file hash values.

4.2. Theoretic Evaluation

Fragmentation of files can be a limiting factor using
real cases, as for each time a file is fragmented one chunk
(of arbitrary length) is no longer identifiable. Since there
is no public instance of a SHA-1 pre-image attack, finding
a small number of chunks using peekaTorrent has a very
small likelihood to be coincidental and can be used for
further analysis steps during the investigation. Compared
to previous work [13, 4], the number of false positives is
greatly reduced, as the block length used for hashing is
larger than the previously used sector/cluster size of 512 or

2https://thepiratebay.se/ and its alternative TLDs
3https://kat.cr/
4https://github.com/isohuntto/openbay-db-dump

4096 bytes. Hashing a larger file block, e.g., 256 kilobytes,
drastically reduces the probability of resulting in the same
hash value (for all files independent of each other). This
also implies that shared file content across files, such as the
ramping structure for Microsoft Office files as discussed
in [13], is evaded as the block length increases.

5. Results

Overall, we collected and analyzed more than 2.3 mil-
lion torrent files. These torrents comprise 3.3 billion block
hash values. From these 3.3 billion block hash values, ap-
proximately 48% (or 1.62 billion hash block values) are us-
able to identify millions of files using various block length.
Another 50% (or 1.66 billion hash block values) are usable
even though the files do not align with the torrent chunk-
ing. 1.1% of the 3.3 billion hash values (or 39 million hash
block values) are not usable for our approach, as the blocks
and their corresponding hashes comprise content of two or
more files. The exact numbers for the most popular tor-
rent block lengths of 2n (for various n) is shown in Table 1,
with exotic chunk sizes omitted (n=2,871) for the sake of
brevity.

From the 2.3 million torrent files we are able to identify
2.6 petabytes of data using TeekaTorrent, or 32 million
files. Regarding only the most common chunk sizes with
100,000 or more torrent files found using our methodology,
we are left with 2.1 million torrents. The pre-computed
hashdb databases as well as the raw torrent files and the
source code used for this paper can be found on our website
https://www.peekatorrent.org.

5.1. hashdb

We then imported the usable sub-file hash values for
all torrents with a piece length of 256k into hashdb [4].
As it can be seen in Table 1, this sums up to 631 mil-
lion hash values. From these 631 million only 474 million
are unique, because of duplicate sub-file hash values. This
is due to the fact that the same files can be contained
in different torrents, e.g., duplicates for each kickassTor-
rents and Pirate Bay. Torrent files that became repackaged
with different files or file ordering can be another reason
to cause this rather large discrepancy. hashdb can then be
used to deny that a given sub-file hash value is part of the
database using Bloom filters. Otherwise the database is
queried, and both filename and info hash are returned if
a corresponding hash value is found. All the features and
APIs provided by hashdb are thus fully usable, and the
entire project is well documented and active5.

While the majority of sub-file hash values are unique
within the data we collected (474 million), the long tail of
duplicates can be seen in Figure 3. The x-axis accounts

5https://github.com/NPS-DEEP/hashdb

5



block length torrents chunks usable chunks offset chunks unusable chunks
16k 75k 146m 123m 84% 22m 15% 305k
32k 95k 171m 112m 65% 58m 34% 662k
64k 335k 217m 124m 57% 90m 41% 2m
128k 201k 227m 115m 50% 109m 48% 2m
256k 669k 1.329b 631m 47% 690m 51% 8m
512k 297k 401m 201m 50% 194m 48% 5m
1024k 307k 357m 165m 46% 187m 52% 5m
2048k 170k 201m 75m 37% 121m 60% 4m
4096k 161k 229m 58m 25% 162m 70% 8m
8192k 18k 27m 8m 30% 17m 65% 975k
16384k 2k 3m 315k 9% 2m 84% 198k
Sum: 2.3m 3.314b 1.615b 48% 1.658b 50% 39m

Table 1: Results of data collection for 2.3 million torrent files

for the number of duplicates found, starting from hash
values with 10 duplicates or more. Note that the y-axis is
log-scale. In the data there are also 17.8 million distinct
sub-file hashes that occur twice, 2.5 million that occur
three times, and about 440,000 that occur four times. We
speculate that these hashes are again caused by some form
of release group information or an embedded URL. The
by-far largest number of duplicates observed was caused
by one particular hash that occurs 8,462,788 times. We
would speculate that this is caused by the “null” hash, for
data areas that contain only zeros.

Figure 3: Distribution of sub-file hash duplicates

5.2. Real Runtime on Limited Hardware

To evaluate our approach further, we took a 5-year old
notebook and created a one gigabyte image from a USB
thumb drive. The notebook was a Lenovo X200s, with a
Core 2 Duo processor (L9400), 4GB of RAM and a reg-
ular hard drive. On the thumb drive we stored the ISO
file for the current version of Ubuntu Desktop, which we
downloaded over BitTorrent. We created a fresh hashdb
database, and seeded it with the extracted SHA-1 hashes

of the torrent file. Overall, we extracted 1158 hash val-
ues for the Ubuntu image, the chunk size was 512k. We
then used a custom module for bulk extractor to generate
SHA-1 hashes of all blocks bulk extractor processes, and
disabled all other plugins.

Running bulk extractor with solely the SHA-1 plugin
activated on the notebook took 220 seconds to process
the 1GB image file. Since the CPU has two cores, two
threads were spawned to process the image. From the 1158
chunks, 1154 were successfully identified using peekaTor-
rent. Three chunks could not be found since the file was
stored fragmented in three fragments (verified manually
using fiwalk), and the last hash value is unusable as it has
a different chunk length. Running the same analysis on
a modern Xeon with 8 cores plus Hyper-Threading took
less than 23 seconds. Running the same image against the
hashdb database of all 474 million chunk hashes took 38
seconds. Since we do not aim to evaluate the performance
of either bulk extractor or hashdb, we do not go into de-
tails of further performance numbers. Also, the average
fragmentation on hard drives depends heavily on the type
of usage, size and operating system. Measuring this for
the average case is beyond the scope of this paper.

6. Discussion

Our results show that a rather large number of block
hash values is usable to identify files based on the data we
collected from BitTorrent files, somewhere close to 98%.
Due to the nature of file sharing networks and the content
distributed there we assume that this is possibly biased,
that these networks commonly share large files like movies
in high quality. We did not investigate the distribution
of filenames and file sizes to what extend one can expect
that the largest file is the first in the torrent file. We as-
sume that this is specific to the application that created
the torrent, as this is not specified in the file format of
BitTorrent [17].

6



Half of the usable chunk hashes come with an arbitrary
offset due to the placement of the affected files. This is
caused by the particularities of BitTorrent files. However,
since bulk extractor processes pages of memory without
any file system information, these artefacts are also re-
trievable (as long as the file is larger than the chunk size).
Other sources for sub-file hashing have to be investigated,
like other P2P protocols or cloud storage solutions such
as Dropbox. We expect similar functionality from other
cloud storage solutions like Google Drive, OwnCloud or
Microsoft OneDrive as well, where the local data struc-
tures could be used as a source for history hash values.
Still, using the data we collected we can identify up to 2.6
petabytes of data for 3.3 billion chunks. We expect these
values to increase, as we will keep collecting data and pub-
lishing it on our website.

Regarding the forensic application and typical use case,
many scenarios come to mind. First, it depends on the
data sources used for seeding the sub-file hashing – this can
be for example all sent e-mail attachments in a company, a
stack of sensitive corporate documents or encrypted data
blobs in the corporate context. Secondly, this can be eas-
ily enlarged by investigators via adding data from private
repositories of interesting files, file archives or any other
data source at hand – like USB thumb drives – or portable
hard drives, and hashing it in sub-file chunks. Another
example could be the cross-linking of files between hard
drives: if any of the hard drives during an investigation is
hashed with a particular chunk size, all other related drives
can use this information to identify non-fragmented over-
laps. After all, this was obviously the original motivation
behind the tight connection between bulk extractor and
hashdb. Foremost, peekaTorrent allows for hard drives
without any meta information at all to find clues on the
content – as long as the hard drive is not encrypted.

6.1. Limitations

While 2.6 petabytes of identifiable files sounds like a
lot, its usefulness depends on the particular kind of in-
vestigation. If the goal is to whitelist as many files and
file fragments as possible on a diverse set of machines, our
approach looks promising. As always in digital forensics,
it depends, however, on the specific context of the inves-
tigations and the questions of interest. For more specific
investigations it depends on the type and volume of data
– creating sub-file hash values of variable block length is
easily scriptable, so if a large repository of files is available,
our methodology is applicable. This can be, for example
all attachments from an e-mail server, malicious files like
malware from anti-virus companies, or even smaller sets
of files with a direct connection to an investigation.

Another limitation is the behavior of storage devices,
operating systems and file systems: SSDs regularly delete
artefacts within the free space using the TRIM command [24],
and depending on the operating system and file system,

fragmentation can occur. There are no current numbers
on the amount of fragmentation happening, with the lat-
est study on file system metadata being already close to
a decade old [25]. Also, the approach only works for files
which have at least a file size bigger then the hashing win-
dow respectively the torrent piece length. Based on our
findings with peekaTorrent, only files with a minimal size
of 16 kilobytes are identifiable, while a vast amount of files
needs to have at least 256 kilobytes due to the nature of
the seeding data.

6.2. Future Work

For future work we plan to evaluate our approach using
real hard drives and/or cases. It is generally hard to find
representative cases or hard drives, but measuring the ap-
plicability of peekaTorrent is our next step. Furthermore,
we plan to investigate the usage of GPUs for variable block
length hashing. We also plan to make our tools and data
collections more readily applicable, by releasing tools for
creating and querying sub-file hash values easy as part of
the forensic process. Lastly, our data collection could be
enhanced by focusing on popular file torrents and by col-
lecting more files over time (which is expected to continue
for the near future) from additional torrent websites as
well as from DHT crawlers.

7. Conclusion

In this paper we have demonstrated how vast amounts
of sub-file hash values can be of use in digital forensics.
We evaluated the idea of using torrent files from popular
file sharing platforms and collected more than 2.3 million
torrent files for our analysis. Based on these torrent files
we extracted more then 3 billion SHA-1 sub-file hash val-
ues and were able to identify up to 32 million files or 2.6
petabytes of information using this data set. Both the
collected data and the written software tools are available
under open source licenses.

Acknowledgements

We thank our shepherd Judson Powers for guiding us
to a highly improved version of the initial paper. We owe
particular thanks to our student Daniel Gasperschitz for
writing the SHA-1 module for bulk extractor. This re-
search was supported by the Austrian Research Promo-
tion Agency (FFG) through the Bridge Early Stage grant
P846070 (SpeedFor) and the COMET K1 program.

References

[1] S. L. Garfinkel, Digital forensics research: The next 10 years,
Digital Investigation 7 (2010) S64–S73.

[2] G. G. Richard III, J. Grier, Rapid forensic acquisition of large
media with sifting collectors, Digital Investigation 14 (2015)
S34–S44.

7



[3] S. Neuner, M. Schmiedecker, E. Weippl, Effectiveness of file-
based deduplication in digital forensics, Security and Commu-
nication Networks.

[4] S. L. Garfinkel, M. McCarrin, Hash-based carving: Searching
media for complete files and file fragments with sector hashing
and hashdb, Digital Investigation 14 (2015) S95–S105.

[5] B. Carrier, File system forensic analysis, Addison-Wesley Pro-
fessional, 2005.

[6] M. H. Ligh, A. Case, J. Levy, A. Walters, The art of memory
forensics: detecting malware and threats in windows, linux, and
Mac memory, John Wiley & Sons, 2014.

[7] D. Brezinski, T. Killalea, Guidelines for Evidence Collection
and Archiving, RFC 3227 (Best Current Practice) (Feb. 2002).

[8] K. Kent, T. Grance, H. Dang, Nist special publication 800-
86, Guide to Integrating Forensic Techniques into Incident Re-
sponse.

[9] A. Hoog, Android forensics: investigation, analysis and mobile
security for Google Android, Elsevier, 2011.

[10] V. Roussev, C. Quates, R. Martell, Real-time digital forensics
and triage, Digital Investigation 10 (2) (2013) 158–167.

[11] M. K. Rogers, J. Goldman, R. Mislan, T. Wedge, S. Debrota,
Computer forensics field triage process model, in: Proceedings
of the conference on Digital Forensics, Security and Law, Asso-
ciation of Digital Forensics, Security and Law, 2006, p. 27.

[12] S. L. Garfinkel, Digital media triage with bulk data analysis and
bulk extractor, Computers & Security 32 (2013) 56–72.

[13] J. Young, K. Foster, S. Garfinkel, K. Fairbanks, Distinct sector
hashes for target file detection, Computer (12) (2012) 28–35.

[14] S. Garfinkel, A. Nelson, D. White, V. Roussev, Using purpose-
built functions and block hashes to enable small block and sub-
file forensics, digital investigation 7 (2010) S13–S23.

[15] D. Kholia, P. Wegrzyn, Looking inside the (drop) box., in: 7th
USENIX Workshop on Offensive Technologies (WOOT), 2013.

[16] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, E. R.
Weippl, Dark clouds on the horizon: Using cloud storage as at-
tack vector and online slack space., in: USENIX Security Sym-
posium, San Francisco, CA, USA, 2011, pp. 65–76.

[17] B. Cohen, The bittorrent protocol specification, bep-3, online
at http://www.bittorrent.org/beps/bep 0003.html.

[18] P. Maymounkov, D. Mazieres, Kademlia: A peer-to-peer infor-
mation system based on the xor metric, in: Peer-to-Peer Sys-
tems, Springer, 2002, pp. 53–65.

[19] M. Steiner, T. En-Najjary, E. W. Biersack, Long term study
of peer behavior in the kad dht, IEEE/ACM Transactions on
Networking (TON) 17 (5) (2009) 1371–1384.

[20] F. Breitinger, B. Guttman, M. McCarrin, V. Roussev,
D. White, Approximate matching: definition and termi-
nology, URL http://csrc. nist. gov/publications/drafts/800-
168/sp800 168 draft. pdf.

[21] T. Ith, Microsoft’s photodna: Protecting chil-
dren and businesses in the cloud, online at
https://news.microsoft.com/features/microsofts-photodna-
protecting-children-and-businesses-in-the-cloud/ (2015, July
15th).

[22] C. Zhang, P. Dhungel, D. Wu, K. W. Ross, Unraveling the
bittorrent ecosystem, Parallel and Distributed Systems, IEEE
Transactions on 22 (7) (2011) 1164–1177.

[23] S. Wolchok, J. A. Halderman, Crawling bittorrent dhts for fun
and profit., in: 4th USENIX Workshop on Offensive Technolo-
gies (WOOT), 2010.

[24] G. Bonetti, M. Viglione, A. Frossi, F. Maggi, S. Zanero, A com-
prehensive black-box methodology for testing the forensic char-
acteristics of solid-state drives, in: Proceedings of the 29th An-
nual Computer Security Applications Conference, ACM, 2013,
pp. 269–278.

[25] N. Agrawal, W. J. Bolosky, J. R. Douceur, J. R. Lorch, A five-
year study of file-system metadata, ACM Transactions on Stor-
age (TOS) 3 (3) (2007) 9.

8


