
TLScompare: Crowdsourcing Rules for HTTPS Everywhere

Wilfried Mayer
SBA Research, Austria

wmayer@sba-research.org

Martin Schmiedecker
SBA Research, Austria

mschmiedecker@sba-research.org

ABSTRACT
For billions of users, today’s Internet has become a criti-
cal infrastructure for information retrieval, social interaction
and online commerce. However, in recent years research has
shown that mechanisms to increase security and privacy like
HTTPS are seldomly employed by default. With the excep-
tion of some notable key players like Google or Facebook,
the transition to protecting not only sensitive information
flows but all communication content using TLS is still in
the early stages. While non-significant portion of the web
can be reached securely using an open-source browser ex-
tension called HTTPS Everywhere by the EFF, the rules
fueling it are so far manually created and maintained by a
small set of people.

In this paper we present our findings in creating and val-
idating rules for HTTPS Everywhere using crowdsourcing
approaches. We created a publicly reachable platform at
tlscompare.org to validate new as well as existing rules at
large scale. Over a period of approximately 5 months we
obtained results for more than 7,500 websites, using multi-
ple seeding approaches. In total, the users of TLScompare
spent more than 28 hours of comparing time to validate ex-
isting and new rules for HTTPS Everywhere. One of our
key findings is that users tend to disagree even regarding
binary decisions like whether two websites are similar over
port 80 and 443.

Keywords
HTTPS, TLS, HTTPS Everywhere, crowdsourcing, privacy,
security

1. INTRODUCTION
One of the major problems in today’s Internet is the lack

of wide-spread HTTPS deployment: while it is a well-under-
stood concept and many websites protect portions of their
communication content with clients using HTTPS, e.g., lo-
gin forms, only a minority of websites serve their entire
content over HTTPS. While protocol extensions like HTTP

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’16 Companion, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4144-8/16/04.
http://dx.doi.org/10.1145/2872518.2888606.

Strict Transport Security [11] can be used to enforce HTTPS
for specified domains, only few website operators deploy
it [17]. This leads to numerous security- and privacy-related
problems, as an active adversary can read, modify or redi-
rect traffic at will during a man-in-the-middle (MITM) at-
tack. This can be either a malicious ISP [13], a local at-
tacker on the same network using ARP spoofing [14], or a
malicious certificate authority [19]. In a recent paper it was
demonstrated by Gmail that not only HTTPS is commonly
targeted by active attackers. Also attacks against other pro-
tocols which use TLS1, e.g., SMTP are encountered in the
wild [9].

Server administrators are responsible for deploying HTTPS
for a given website, and there is little that users can do to
protect their communication content if servers do not sup-
port HTTPS. However, many websites employ HTTPS for
a fraction of their pages, resulting in a valid certificate and
proper HTTPS deployment – many times serving the same
webroot over both protocols. The browser extension HTTPS
Everywhere redirects otherwise unencrypted communication
content to the encrypted counterpart where available, with
a set of rules written in regular expressions. So far these
rules are manually maintained, and while everyone can cre-
ate his/her own rules, this approach clearly doesn’t scale
to the current size of the web. Therefore we present our
platform in this paper, which tries to scale rule-creation and
-verification using crowdsourcing.

The remainder of this paper is divided into the following
sections: Section 2 gives the essential background on current
HTTPS deployment and HTTPS Everywhere. Section 3 in-
troduces our approach for crowdsourcing rule generation.
Section 4 presents our implementation for the collection of
these rules. Section 5 discusses our findings before we con-
clude in Section 6.

2. BACKGROUND
Today Transport Layer Security (TLS) is responsible for

the majority of encrypted online communication, not only
for HTTPS but also numerous other protocols. Compared
to plaintext communication it provides confidentiality, au-
thenticity and integrity. Currently, TLS 1.2 [8] is the most
recent version of the SSL/TLS protocol family, with TLS
1.3 on the horizon. Many of the problems of TLS have been

1In this paper we use the term TLS to refer to all incarna-
tions of the TLS and SSL protocols, if not specified other-
wise.

discussed in the literature [7, 21], and multiple guidelines
on how to securely deploy TLS using best-practice methods
have been published [22, 3].

While HTTPS Everywhere is a solution that has to be in-
stalled in client browsers, there are also server-side solutions
available to prevent cleartext communication despite server-
side redirects from TCP port 80 to TCP port 443. HTTP
Strict Transport Security (HSTS) [11] for example was stan-
dardized to enforce the use of HTTPS. Some browsers go
even one step further by shipping the software with prede-
fined HSTS lists to enforce HTTPS before the first use [16].

2.1 HTTPS Everywhere
HTTPS Everywhere2 is a browser extension for Firefox,

Chrome and Opera which is developed by the EFF and the
Tor project. It ensures that a secure connection is used if
available by rewriting URLs in the browser before attempt-
ing to start a connection over HTTP. This is helpful in the
particular use case: a secure channel is available, but not
used by default, and the server operator does not by default
employ HTTPS for all users and communication content.
The rules for HTTPS Everywhere are written using regular
expressions which specify the target domains as well as the
secure counterparts that ought to be used instead. Listing 1
presents a simple rule for the domain torproject.org. Not
only does it rewrite all connections to http://torproject.org,
but also all valid subdomains with the * wildcard.

<ruleset name="Tor Project">

<target host="torproject.org" />

<target host="*.torproject.org" />

<!-- excluded content -->

<rule

from="^http://([^/:@\.]+\.)?torproject.org/"

to= "https://$1torproject.org/" />

</ruleset>

Listing 1: HTTPS Everywhere Rule for torproject.org3

These rules are manually developed and maintained using
a public git repository. At the time of writing the repository
contains approx. 18,400 files that specify rewrite rules. The
process of manually creating rules is justified by the possi-
ble complexity of rewrite rules for particular deployments,
yet simple rewrite algorithms do sometimes not know how
to handle these deployments correctly. During the compi-
lation of the browser extension, these xml files are merged
into a single SQLite file. Table 1 shows that the majority of
the existing rules of HTTPS Everywhere are in fact really
simple. 13,871 files contain only one rewrite rule and of all
rules 73% do not reference the http URL (i.e., are not using
$ in the regular expression). 28% use the trivial rewrite rule
“http:” to “https:” as listed in Listing 2 and only 1.6% use a
more complicated rule with two references. The “exclusion”
element is used very seldom.

2https://www.eff.org/https-everywhere
3https://github.com/EFForg/https-everywhere/blob/
master/src/chrome/content/rules/Torproject.xml

<ruleset name="example.org">

<target host="example.org" />

<rule from="^http:" to="https:" />

</ruleset>

Listing 2: Trivial rewrite rule

Files with 1 rule 13,871
Files with 2–10 rules 4,496
Files with more than 10 rules 44
Total rules 26,522
Trivial rules 7,528
Rules without reference ($) 19,267
Rules with more than one reference ($) 417
Files with no exclusion 17,005
Files with one exclusion 1,136
Files with more exclusion 272
Files with no securecookie 8,597
Files with one securecookie 9,215
Files with more securecookie 601

Table 1: Ruleset statistics

2.2 Related Work
Recent publications regarding TLS in general focus firstly

on the insecure deployment of TLS in the field, and sec-
ondly on new cryptographic attacks and their possible im-
pact. Problems range from the use of old and deprecated
SSL/TLS versions [12], to the use of insecure cryptographic
primitives like export-grade ciphers [18, 6] or weak RSA keys
in certificates [4], to the use of TLS implementations with
known bugs like Heartbleed [10]. To the best of our knowl-
edge we are the first to discuss the creation of rules for
HTTPS Everywhere using automatic and semi-automatic
means.

3. DESIGN
We split the design of automated rule generation in two

parts. First, suitable rules are generated with a rather sim-
ple algorithm. Second, these rules are validated by match-
ing the similarity of the encrypted and unencrypted content
with crowdsourcing methods.

3.1 Automated Rule Generation
Many domains are deployed with a simple HTTPS con-

figuration. For these domains rules can be automatically
generated with tool support. HTTPS Everywhere provides
a script to generate trivial rules for these domains (called
make-trivial-rule). Rulefiles generated with this script
include one or more targets and the simple rule as listed in
Listing 2. We can identify hosts that support HTTP and
HTTPS via Internet-wide scanning techniques. Hosts that
use HSTS or server-side redirects can also be efficiently iden-
tified and excluded from further processing. We then use a
rather easy approach of rule generation by creating trivial
rules for all domains. We also include often-used subdo-
mains such as “www” and “secure”. Also, the rank from the
Alexa Top 1 Million ranking [1] is taken into consideration.

The most important requirement for new HTTPS Every-
where rules is that we want to avoid corrupt rules under all
circumstances. If error-prone rules reduce user satisfaction,
the plugin may get uninstalled. Of course the assumption

torproject.org
https://www.eff.org/https-everywhere
https://github.com/EFForg/https-everywhere/blob/master/src/chrome/content/rules/Torproject.xml
https://github.com/EFForg/https-everywhere/blob/master/src/chrome/content/rules/Torproject.xml

that two pages serve the same content is naive, although of-
ten true. We want to avoid corrupt rules, we have to further
prove the similarity of encrypted and unencrypted content.

3.2 Rule Validation
The question whether the content of two pages is similar

is not easy to answer. We can compare the equality of two
pages by comparing their hash values, but if, e.g., only the
server name differs in http and https, the pages will not share
the same hash value despite being similar. This problem
continues with dynamically generated content. The pages
can be similar, indicating a valid rule, but they are not equal,
e.g., if they display different ads or other dynamically loaded
content. To measure the similarity and thus conclude if
a rule is valid or not, we identify two possibilities: First,
similarity-matching algorithms. These algorithms can be
based on the HTML source code, visual recognition, or other
metrics. Second, crowdsourcing approaches, i.e., we use the
input from a large group of people who voluntarily compare
pages. To facilitate this approach we developed a web service
that is easy to use and publicly available. We can then use
crowdsourcing results to measure the correctness of rules
and analyze the reasons why rules are invalid.

4. CROWDSOURCING
In order to crowdsource the validation of rules we created

the project TLScompare.org. This web service facilitates the
rewrite rule validation process by providing an easy-to-use
interface. As illustrated in Figure 1, this minimalistic in-
terface offers three buttons: one to start the comparison
and two to choose the result. After clicking the button
“Compare!” two separate browser windows appear. The
left window displays the non-secured (HTTP) version of a
web page, the right window displays the secured (HTTPS)
version. These two different URLs represent the “from” and
“to” value of the regular expression. The browser windows
are opened without a menubar or a scrollbar. The windows
are also equally sized and do not overlay the buttons of the
main window. After comparing the two pages the user has
two choices in the normal operation mode. This is illustrated
in Figure 2.

Not equal The two pages differ in some way.

Equal The two pages are visually equal.

Figure 1: Normal operation mode

The meaning of these choices is explained in the FAQ
section. After the user chooses one result, both windows
close automatically and the next comparison can start.

Figure 2: Comparison screen

Figure 3: Expert operation mode

As shown in Figure 3, we also introduced an“expert mode”
to analyze the differences on a more fine-grained level. The
expert mode enables a variety of result choices, specifying
the detailed reason. Possible choices with short explanations
– also shown in the corresponding tooltip – are:

Certificate Mismatch Certificate URL is different to URL.

Untrusted Certificate Expired certificate, or untrusted
by browser.

Mixed content Pages do not look similar due to mixed
content (CSS, JS).

Timeout/404/DNS Network related errors on either page.

Rule makes no sense No use in upgrading: pages are not
similar or either page redirects, e.g., from HTTP to
HTTPS (or vice versa).

Mixed content Pages look similar, but mixed content warn-
ing.

Rule makes sense Pages look similar, no HTTPS warn-
ings.

The user is able to compare pages for different datasets,
while we are able to set different default datasets. We also
included an administration panel as illustrated in Figure 4.

Technically TLScompare is developed as a Python WSGI
application behind a nginx webserver. Flask [20] is used
as web framework and the results are stored in a relational
SQLite3 database via SQLAlchemy [5]. All important meth-
ods are exposed via REST endpoints. This setup is hosted
at https://tlscompare.org. For every result we store the

https://tlscompare.org

Figure 4: Administration panel

IP, the User Agent, the result, the reason (if classified in ex-
pert mode) as well as the timestamps of the original request
and original result. Each validation attempt is identifiable
via an unique id and connected to a session identifier. We
are able to filter out bogus results via wrong session identi-
fiers and a too short duration between request and result.

To improve the user motivation we included basic statis-
tics for the current session and the global scope as depicted
in Figure 5. The user is able to compare the number of
results to the global scope or other users.

Figure 5: Statistics on global and session scale

4.1 Acquired Data
At the time of writing we have acquired 8,523 validation

attempts and 7,616 actual results. An overview of the ac-
quired data is presented in Table 2.

Unfinished attempts 907
Actual results 7,616
Number of different UserAgents 125
Number of different sessions 268
Min results per session 1
Max results per session 456
Average results per session 28.4
Median results per session 6
Sum of time between request and result 27.98h

Table 2: Results statistics

We introduced different datasets from which to choose:

Existing rules Comparisons of unencrypted pages that are
currently rewritten by HTTPS Everywhere. We com-
puted these URLs by “reversing” the regular expres-
sions of rules. For simplicity we only generated rules
out of regular expressions that include different sub-
domains, but don’t contain more complicated regular
expressions.

Generated rules We also generated values to compare do-
mains of the Alexa Top 1 Million domain ranking.
We used comparisons for second-level domains and for
common third-level domains, e.g., www, secure, or ssl.
We also filtered out a subset with the 10,000 highest-
ranked domains.

We expect these datasets to yield completely different val-
ues. For the existing rule set, we expect the majority of
results to have similar pages. Statistics for this dataset
are presented in Table 3. We see that there are, against
our expectations, more “Non Equal” results. We therefore
checked all 226 “Not Equal” results that were set without
a reason. We found that 106 of these domains deployed a
default server-side redirect and were set before we changed
“Not Equal (Rule makes no sense)” in expert mode to ex-
plicitly save this reason. We assume that these results were
generated by users that realized that additional client-side
rules make no sense although the pages look similar. The
remaining results must be checked separately.

Total attempts 543
Total results 527
Equal 169
Not Equal (Total) 358
Not Equal (Without reason) 226
Not Equal (Timeout) 58
Not Equal (Certificate Mismatch) 40
Not Equal (Untrusted certificate) 14
Not Equal (Rule makes no sense) 15

Table 3: Dataset for existing HTTPS Everywhere
rules

We also created a dataset of pages for the Alexa Top 1
Million ranking. We used a rather naive algorithm to cre-
ate new rules which were then compared. The results of
this dataset presented in Table 4. We see that 74% of all
rules were marked with “equal”. This number is conform to
our assumption that many hosts serve similar pages on the
encrypted and unencrypted channel.

Total attempts 2,600
Total results 2,267
Equal 1,688
Not Equal 579
Not Equal (mixed-content) 87

Table 4: Dataset for similar Alexa Top 10k domains

Table 5 presents the validity results per created rule. Each
“1” represents one comparison where the pages were marked
as equal, each“0”represents a non-equal result. It also shows
comparisons where more than one result was submitted. For
comparisons with two results, 87% have the same result and
13% differ in the result. Apart from users that submitted
wrong results, this can have multiple reasons, e.g., the pages
look different in some browsers or the similarity changed over
time. For comparisons with three results, 86% have the same
result and 14% have one discordant value.

Combination Number of Results
0 842
1 443
00 612
10 148
11 394
000 67
100 6
110 10
111 32
0000 9
1000 2
1100 2
1110 1
1111 5
00000 1

Table 5: Multiple results to ensure data quality

4.2 Deriving rules
With this data we can automatically generate HTTPS

Everywhere rules from results that have been checked mul-
tiple times and yielded the same result. In the future, we
have to find the correct threshold; currently we assume that
comparisons that yield the result “Equal” for at least three
times can be taken for sure. We currently have 38 results
that fulfill this requirement. The creation realized by select-
ing all candidates, passing them to a generation script and
creating rules as presented in Listing 3, where BASEAD-
DRESS is the domain name of the unencrypted part, and
ENCRYPTED is the domain name of the encrypted URL.
These rules are then ready to be inserted in the HTTPS
Everywhere repository.

<ruleset name="BASEADDRESS">

<target host="BASEADDRESS" />

<rule from="^http://BASEADDRESS"

to="https://ENCRYPTED" />

</ruleset>

Listing 3: Trivial rewrite rule

5. DISCUSSION
We started our project as non-commercial, although sev-

eral commercial crowdsourcing frameworks exist. The prob-
ably most famous variant is Amazon Mechanical Turk [2]. It
commercializes so called“Human Intelligence Tasks”(HITs).
Each HIT is solved by a human worker who gets paid with
a small amount of money. One page comparison can be
modelled as HIT, and with this platform we could easily
enlarge our dataset. With our non-commercial project we
were able to collect 7,616 results in a timespan of approx.
5 months. We announced our project solely on Twitter and
held one lightning talk at a community-driven event. We
assume that the quality of our data is comparable to data
from other crowdsourcing frameworks. We also assume that
we would have to include more sophisticated methods to en-
sure data quality if we also included money-driven results
with commercial crowdsourcing providers.

To further increase the usage of encrypted connections for
data transmission, other problems have to be solved first.

This includes an easy way to deploy server-side HTTPS and
ensure trust in the used certificates. A promising project
currently dealing with this issue is Let’s encrypt [15]. Server-
side redirection is making the effort of client-side rewrite
rules worthless, and together with the server-side enforce-
ment of HTTPS via HSTS [11] it is clearly the favorable
solution.

5.1 Future Work
We currently investigate the use of different algorithms

to automatically measure similarity. We have to identify
usable algorithms, but the question of similarity in the con-
text of HTTPS support is not easy to define. Can an URL
be rewritten to its encrypted counterpart if the content is
not equal? If some content of the page is randomly dis-
played, but the functionality stays the same? Is the content
similar if the code is similar or if the rendered images are
similar? Different technical methods are possible: simple
word matches, comparisons of the Document Object Model,
algorithms that compare images of rendered pages amongst
others. However, similarity matching algorithms will also
yield false positives or create borderline cases. TLScompare
can then be used to crowdsource fine tuning of these algo-
rithms or crowdsource manual checking of the results.

We will also adopt TLScompare for a student exercise.
After students manually create new rules for HTTPS Ev-
erywhere, TLScompare will be used to validate these rules.

Weighting of user quality is currently left out, but is an-
other measure to ensure data quality. Users are not identi-
fiable, but the results are stored with a session id, the User
Agent and the IP address. So if one user misjudges more re-
sults, the weight of this session is reduced accordingly. Also,
the average compare time, i.e. the duration between request
and result, is one property that can be used to calculate the
user’s credibility.

Another future issue is to optimize the selection algo-
rithm for the next comparison. An improved version can
immediately choose the same comparison for another user
to increase comparisons with more than one result. This is
especially true for larger datasets where the probability of
multiple results is low.

6. CONCLUSION
In this paper we presented a new approach to create and

validate rules for HTTPS Everywhere. We showed that the
currently used approach doesn’t scale and does not use the
large number of simple-configured HTTPS deployments. We
presented the design of our webservice TLScompare and ex-
plained how crowdsource approaches can be used to generate
and validate rules. We implemented the service, deployed it
in publicly available way and collected over 7,500 results
for different datasets. We took a look at the first results
for existing comparisons of HTTPS Everywhere rules and
identified problems of the user’s understanding of different
terms. We tested newly generated rules and showed that
it is possible to consider a rewrite rule to be valid with the
use of multiple results per comparison. These rewrite rules
were than transformed in an XML representation that is to
be submitted to HTTPS Everywhere. We identified prob-
lems with the quality of our data and suggested methods of
ensuring high data quality with statistical methods. Other
approaches of rule generation and additional use cases were

considered. The fundamental problem regarding the lack of
existing HTTPS deployments was discussed.

Thanks to our project it is possible to simplify the pro-
cess of HTTPS Everywhere rule generation. This increases
the content transmitted exclusively over HTTPS for users
of this plugin and makes a small step in the direction of an
encrypted Internet.

Acknowledgements
This work has been supported by COMET K1, FFG - Aus-
trian Research Promotion Agency and under grant no. 846028.

7. REFERENCES
[1] Alexa Internet Inc., Top 1,000,000 sites. http:

//s3.amazonaws.com/alexa-static/top-1m.csv.zip.

[2] Amazon Mechanical Turk.
https://www.mturk.com/mturk/welcome.

[3] Applied Crypto Hardening. Online at
https://bettercrypto.org, 2015.

[4] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry,
M. Green, J. A. Halderman, N. Heninger, D. Springall,
E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella-Béguelin, and P. Zimmermann. Imperfect
Forward Secrecy: How Diffie-Hellman Fails in
Practice. In 22nd Conference on Computer and
Communications Security. ACM, 2015.

[5] M. Bayer. SQLAlchemy - The database toolkit for
python. http://www.sqlalchemy.org/.

[6] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud,
C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and
J. K. Zinzindohoue. A messy state of the union:
Taming the composite state machines of TLS. In
Symposium on Security and Privacy. IEEE, 2015.

[7] J. Clark and P. C. van Oorschot. SoK: SSL and
HTTPS: Revisiting past challenges and evaluating
certificate trust model enhancements. In Symposium
on Security and Privacy, pages 511–525. IEEE, 2013.

[8] T. Dierks and E. Rescorla. The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246
(Proposed Standard), Aug. 2008. Updated by RFCs
5746, 5878, 6176.

[9] Z. Durumeric, D. Adrian, A. Mirian, J. Kasten,
E. Bursztein, N. Lidzborski, K. Thomas, V. Eranti,
M. Bailey, and J. A. Halderman. Neither Snow Nor
Rain Nor MITM...: An Empirical Analysis of Email
Delivery Security. In 15th Internet Measurement
Conference, pages 27–39. ACM, 2015.

[10] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman,
M. Bailey, F. Li, N. Weaver, J. Amann, J. Beekman,
M. Payer, et al. The matter of Heartbleed. In 14th
Internet Measurement Conference, pages 475–488.
ACM, 2014.

[11] J. Hodges, C. Jackson, and A. Barth. HTTP Strict
Transport Security (HSTS). RFC 6797 (Proposed
Standard), Nov. 2012.

[12] R. Holz, J. Amann, O. Mehani, M. Wachs, and M. A.
Kaafar. TLS in the wild: an Internet-wide analysis of
TLS-based protocols for electronic communication. In
Network and Distributed System Security Symposium.
Internet Society, 2016.

[13] R. Holz, T. Riedmaier, N. Kammenhuber, and
G. Carle. X. 509 Forensics: Detecting and Localising
the SSL/TLS Men-in-the-middle. In European
Symposium on Research in Computer Security, pages
217–234. Springer, 2012.

[14] M. Huber, M. Mulazzani, and E. Weippl. Who on
earth is “Mr. Cypher”: automated friend injection
attacks on social networking sites. In Security and
Privacy – Silver Linings in the Cloud, pages 80–89.
Springer, 2010.

[15] Internet Security Research Group. Let’s Encrypt -
Let’s Encrypt is a new Certificate Authority.
https://letsencrypt.org/.

[16] D. Keeler. Preloading HSTS. Mozilla Security Blog -
https://blog.mozilla.org/security/2012/11/01/

preloading-hsts, 2012.

[17] M. Kranch and J. Bonneau. Upgrading HTTPS in
Mid-Air: An Empirical Study of Strict Transport
Security and Key Pinning. In Network and Distributed
System Security Symposium. Internet Society, Feb.
2015.

[18] W. Mayer, A. Zauner, M. Schmiedecker, and
M. Huber. No Need for Black Chambers: Testing TLS
in the E-mail Ecosystem at Large. arXiv preprint
arXiv:1510.08646, 2015.

[19] J. Prins and B. U. Cybercrime. Diginotar certificate
authority breach’operation black tulip’, 2011.

[20] A. Ronacher. Flask - web development, one drop at a
time. http://flask.pocoo.org/.

[21] Y. Sheffel, R. Holz, and P. Saint-Andre. Summarizing
Known Attacks on Transport Layer Security (TLS)
and Datagram TLS(DTLS). RFC 7457 (Proposed
Standard), 2015.

[22] Y. Sheffer, R. Holz, and P. Saint-Andre.
Recommendations for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer
Security (DTLS). RFC 7525 (Proposed Standard),
2015.

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://www.mturk.com/mturk/welcome
https://bettercrypto.org
http://www.sqlalchemy.org/
https://letsencrypt.org/
https://blog.mozilla.org/security/2012/11/01/preloading-hsts
https://blog.mozilla.org/security/2012/11/01/preloading-hsts
http://flask.pocoo.org/

	Introduction
	Background
	HTTPS Everywhere
	Related Work

	Design
	Automated Rule Generation
	Rule Validation

	Crowdsourcing
	Acquired Data
	Deriving rules

	Discussion
	Future Work

	Conclusion
	References

