
Timestamp hiccups: Detecting manipulated filesystem
timestamps on NTFS

Sebastian Neuner
SBA Research

Vienna, Austria
sneuner@sba-research.org

Artemios G. Voyiatzis
SBA Research

Vienna, Austria
avoyiatzis@sba-research.org

Martin Schmiedecker
SBA Research

Vienna, Austria
mschmiedecker@sba-research.org

Edgar R. Weippl
SBA Research

Vienna, Austria
eweippl@sba-research.org

ABSTRACT
Redundant capacity in �lesystem timestamps is recently proposed
in the literature as an e�ective means for information hiding and
data leakage.

Here, we evaluate the steganographic capabilities of such chan-
nels and propose techniques to aid digital forensics investigation
towards identifying and detecting manipulated �lesystem times-
tamps.

Our �ndings indicate that di�erent storage media and interfaces
exhibit di�erent timestamp creation pa�erns. Such di�erences
can be utilized to characterize �le source media and increase the
analysis capabilities of the incident response process.

CCS CONCEPTS
•Applied computing→System forensics; Evidence collection,
storage and analysis; Investigation techniques; •Security and
privacy →File system security;

KEYWORDS
Information security, information leakage, steganography, digital
forensics, NTFS, �lesystem

ACM Reference format:
Sebastian Neuner, Artemios G. Voyiatzis, Martin Schmiedecker, and Edgar
R. Weippl. 2017. Timestamp hiccups: Detecting manipulated �lesystem
timestamps on NTFS. In Proceedings of ARES ’17, Reggio Calabria, Italy,
August 29-September 01, 2017, 6 pages.
DOI: 10.1145/3098954.3098994

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ARES ’17, Reggio Calabria, Italy
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5257-4/17/08. . . $15.00
DOI: 10.1145/3098954.3098994

1 INTRODUCTION
Cybercrime is rising at unprecedented levels and threatens the
function of our society [5]. Digital forensics are more and more im-
portant in investigating cases and provide evidence for commi�ed
crimes using or utilizing digital means.

Temporal analysis is very useful for digital forensics, especially
for reconstructing the timeline of (digital) actions and events. How-
ever, the results of an analysis might not be reliable because times-
tamps of �les and directories can be tampered by anti-forensic
tools [3, 4].

Numerous steganographic techniques are proposed and analyzed
in the research literature [9]. Storage or format-oriented stegano-
graphic techniques hide information in logical channels by utilizing
redundant or unused �elds in format speci�cations [6]. �e topic
of hiding data in �lesystem metadata is already discussed in the
late 1990s [1].

NTFS is the standard �lesystem for Microso� Windows oper-
ating systems. �e rules for updating the NTFS timestamps are
quite complex and depend on both the type of the �le (e.g., a Mi-
croso� Windows executable, a Microso� O�ce document, or a
directory) and the original source of the �le (e.g., an external hard
disk forma�ed with FAT32, a compressed archive, or a �le from an
UDF-forma�ed CD-ROM). Such subtle di�erences can be utilized
to detect manipulated timestamps that (maliciously) aim to hinder
the forensic investigation [2–4].

TOMS is a recently proposed steganographic system that o�ers
stealthiness, robustness, and wide applicability [8]. TOMS hides
information in the sub-second part of the NTFS timestamps that is
not otherwise utilized in normal �lesystem operations.

In this paper, we evaluate the steganographic capabilities of such
channels and propose techniques to aid digital forensic investiga-
tions. More speci�cally, we study the following questions:

• How do di�erent storage media and connection interfaces
a�ect the timestamp pa�erns?

• How do di�erent �le creation approaches a�ect the times-
tamp generation pa�erns?

• How does the regular use of the �lesystem a�ect the capac-
ity of the channel over the sub-second part of the times-
tamps?

• How do practices followed in enterprise environment a�ect
the channel capacity?

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy S. Neuner, A.G. Voyiatzis, M. Schmiedecker, and E.R. Weippl

• How can we utilize these information to design appropriate
detection techniques and mechanisms?

�e remainder of the paper is structured as follows. Section 2
describes TOMS over NTFS timestamps in greater detail. Section 3
describes the methodology of our approach, the experiments per-
formed, and the collected datasets. Section 4 evaluates collected
information and proposes techniques to detect timestamp manipu-
lation. Finally, Section 5 presents the conclusions of this paper and
describes future directions of work.

2 STEGANOGRAPHY OVER FILE
TIMESTAMPS WITH TOMS

NTFS treats everything as a �le and maintains at least one Master
File Table (MFT) entry that includes the last-modi�ed, access, cre-
ated, and MFT-entry modi�ed (MACE) times. �e timestamps are
stored in the FILETIME structure. �e structure contains a 64-bit
value representing the number of 100-nanosecond intervals elapsed
since January 1, 1601 (UTC) [7].

�is ample capacity is a source of redundancy, given that such
granularity is not used by any means in modern operating sys-
tems. TOMS was proposed to use this spare capacity to realize an
information hiding channel of steganographic strength [8].

It is quite common for modern operating systems to disable
updating the last access or even the last modi�ed timestamp. �is
is for performance reasons and for increasing the useful lifetime of
the storage medium, e.g., an SSD or USB �ash drive. In consumer-
grade usage scenarios, we can expect that the last access timestamp
remains intact as well as the creation timestamp.

NTFS uses 24 bits to represent the sub-second part of the times-
tamps. �us, six bytes per �le can be used to create a hidden infor-
mation channel. �ese bytes comprise the so-called TOMS elemen-
tary storage unit (ESU). �e design of TOMS follows a four-layers
approach: a storage container layer to handle the original message,
an error correction layer for coping with errors, an encryption
layer for hiding the presence of the message and the redundancy
introduced by the error correction layer, and the ESU layer.

�e interested reader can consult [8] for a detailed description of
each layer and the steps to embed a message in the creation and last
access timestamps of �les stored in an NTFS �lesystem and then re-
call it. Here, we are interested to explore if such information can be
detected in �rst place due to the apparent uniformity of the times-
tamps and what is a realistic capacity for a TOMS steganographic
channel. We describe in the next Section a series of experiments
we designed and performed for this.

3 METHODOLOGY AND DATASETS
We designed three experiments to study the characteristics of the
TOMS steganographic channel. We derived one dataset per experi-
ment: a synthetic (arti�cially-generated) dataset, a consumer-grade
dataset contributed by individual volunteers, and an enterprise-
grade contributed by a collaborating company. We describe in the
following the experiments and the collected information in greater
detail.

3.1 Synthetic dataset
We used the same laptop computer running Microso� Windows
10 64-bit build 1607 for all the steps described below. �e laptop
computer has an Intel i3 with 2.1 GHz and 4 GB RAM.

3.1.1 Storagemedia. We used �ve di�erent storage media, namely
a mechanical, spindle disk (HDD), a solid-state disk (SSD), two ex-
ternal hard disks (E1 and E2), and a USB �ash drive (U1). �e HDD
is manufactured by Hitachi (model number: HTS541010G9SA00). It
has a storage capacity of 100 GB and spins with 5,400 rpm (revo-
lutions per minute). �e SSD is manufactured by Micron (model
number: MTFDDAK256MAY). It has a storage capacity of 256 GB. Both
E1 and E2 disks drives were mechanical, spindle disks hosted in
a separate case. E1 is manufactured by Western Digital (model
number: WD2500I032-001). It has a storage capacity of 240 GB and
spins with 5,400 rpm. An IDE connector is used to mount the disk
inside the case. E2 is manufactured by Seagate (model number:
STDR2000200). It has a storage capacity of 2 TB and spins with
5,400 rpm. A SATA connector is used to mount inside the case.
Finally, U1 is manufactured by Kingston (model number: DTR30G2,
Datatraveler). It has a storage capacity of 16 GB.

3.1.2 Connectors and interfaces. �e two internal disks (HDD
and SSD) were connected over a SATA bus. �e two external disks
were connected over a USB 2.0 (E1) and a USB 3.0 (E2) interface. A
USB 3.0 port was used to connect the USB �ash drive. We also used
the HDD in a di�erent setup (eS), connected to the system through
an external SATA (eSATA) connector.

3.1.3 Manual file copy from external sources. A�er the initial
setup of the operating system, several �les were delivered using a
USB �ash drive. Some of those �les were then installed to provide
a basis for scripted �le generation described in Section 3.1.4.

3.1.4 Scripted file generation. We used two scripts to generate
�les1, one based on Python and one based on Microso� Powershell.
�e Python script utilized the default packages, such as “os”. �e
Microso� Powershell script relied on no external packages.

Both scripts accept as an input parameters the path to create
the �les (e.g., C:\tmp); the number of �les to create; and, option-
ally, a delay between each �le creation. For the la�er script, we
suppressed the default behavior of printing the created �les in the
standard output (stdout), for performance (speed) reasons and for
compliance with the behavior of the former script.

3.1.5 Automated file generation process. We proceeded with the
�le generation as follows. First, we forma�ed the storage media and
created an NTFS volume (�lesystem) on them. �en, we did a fresh
install of the operating system from a readily-available Microso�
Windows 10 image available on a spare external USB drive. We
repeated the same procedure at the start of each experiment de-
scribed below. �is approach ensured a common starting point for
all the experiments and a ground truth for the �les of the operating
system.

�e format step in the beginning is a necessary step to ensure
that the MFT is reset and all experiments start from the same point.
Indeed, the MFT is a special �le on NTFS-based �lesystems. It

1�e scripts are available at h�ps://www.sba-research.org/ares2017hiccups/

https://www.sba-research.org/ares2017hiccups/

Timestamp hiccups: Manipulated NTFS timestamp detection ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

contains a record for every �le and directory ever contained in the
�lesystem. As such, a growing-in-size MFT impacts the read and
write time of the �les, due to the longer access time to the MFT.
Hence, the more �les are created by its iteration of script execution,
the longer the access time becomes.

�e following list summarizes the experiments we ran:
• One set of 100,000 �les created with the Python script on

the HDD and SSD with a random (uniform) delay of 0.1 to
1.0 second between each �le creation. �e same using the
Microso� Powershell script.

• Two sets of 100,000 �les each created with the Python
script on the HDD, SSD, E1, E2, U1, and eS with no delay
between each �le creation, i.e., as fast as possible. �e same
using the Microso� Powershell script.

3.1.6 File timestamp extraction. We developed a Python script
based on the stat subpackage of os to extract the �le timestamps
from each �le on the �lesystem. We extracted the creation (C), last
accessed (A), and last modi�ed (M) timestamps of each �le and
directory with a granularity of 100 nanoseconds. �e outputs of
the script were saved on an external disk for later processing. Once
logs were collected, the storage media under test was wiped out,
forma�ed, and the process concluded.

3.2 Consumer dataset
�e second dataset was derived by four individuals that volunteered
to participate in our study through personal invitations. We ex-
plained to the volunteers the aim of our study and shared with
them the source code of the Python script used to extract the �le
timestamps for review before ge�ing their consent. To protect the
innocent, the script parsed through the SHA3 hashing algorithm
both the �lename and its path; the information collected are the
hash output and the three timestamps (C, A, and M) for each �le.

In the �rst round, the volunteers executed the timestamp ex-
traction Python script on their personal computers and laptops
running a version of the Microso� Windows operating system and
hosting at least one NTFS �lesystem. We label these partitions as
consumer-grade. �e partitions span diverse uses, such as playing
computer games, IT freelancing, leisure activities (e.g., Internet
sur�ng and movie watching), backup storage for valuable personal
information (e.g., photographs and long documents), and mobile
computing.

�e script outputs were wri�en in text �les and the volunteers
shared back these �les. �e volunteers contributed timestamp
information for ten NTFS partitions and 2.5 million �les in total.

In the second round, we contacted the volunteers again a�er
ten weeks and asked them to perform the same steps again. All
the participants responded within one week. �e combined logs
provided information for 2.6 million �les in total, i.e., a 100,000
increase in the number of �les.

3.3 Enterprise dataset
�e third dataset was contributed by a collaborating company that
agreed to participate in our study. �e company policy dictates
common rules for each computer (e.g., automated installation of
licensed so�ware packages) and centralized administration by au-
thorized personnel.

Using the same script as in the case of the individual volunteers,
the company personnel responsible for its IT infrastructure ex-
tracted and shared with us the timestamps for more than 22 million
�les of 70 di�erent computers and NTFS partitions.

In this enterprise environment, we assume that the �le times-
tamps for a large number of �les across di�erent computers will be
the same, as the �les come from the same installation media.

4 ANALYSIS
Our analysis is based on the three types of datasets we collected
(synthetic, consumer, and enterprise). We focus on the following
parameters: e�ect of the underlying storage technology and cre-
ation techniques, e�ect of the regular use of the �lesystem, and
e�ect on large-scale installations.

For the sake of readability, herea�er we use the term “times-
tamp” to refer to the 24-bit sub-second part of each �le’s 64-bit “full
timestamp”. Recall that NTFS stores this parts of information with
a granularity of 100 nanoseconds. Hence, there are in principle 10
million unique timestamps.

4.1 Storage technology and scripted creation
We analyzed the extracted creation (C) timestamps for the six stor-
age media used to produce our synthetic dataset. Since the �les
are not accessed or modi�ed a�erwards, we do not discuss in the
following the access (A) and last-modi�ed (M) timestamps. �ey
are the same as the creation timestamp.

�e �rst step relates to the delayed creation of 100,000 �les in
the two internal disks (HDD and SSD). It took one minute and
35 seconds for the Python script to create all these �les, and 31
seconds less for the Powershell script. Table 1 summarizes the
average and standard deviation number of occurrences of each
unique timestamp included in this part of the synthetic dataset.

In the case of the Python script on the HDD, the distribution
is quite uniform (average 1.0) and there are 100,000 unique full
timestamps. In the case of the Powershell script on the HDD, the
situation is slightly di�erent. �ere are multiple repeating times-
tamps and only 66,397 unique full timestamps. �is number is
signi�cantly low. �ere are even more than 4,300 cases where three
�les share the exact same full timestamp.

�e situation is similar in the case of the SSD. �e distribution
is quite uniform for Python and all the 100,000 �les have a unique
full timestamp. Again, the Powershell script results in repeating
timestamps and there are only 64,668 unique full timestamps. �ere
are even more than 6,800 cases where three �les share the exact
same full timestamp.

We conclude from the above that the storage media and connec-
tors do not a�ect the timestamp distribution. However, it appears
that the scripting language used to generate the �les does a�ect the
produced timestamps.

�e second step relates to the creation of two sets of 200,000
�les in each of the six available setups described in Section 3.1.2. In
general, the creation of the �les was faster using Powershell rather
than Python, as summarized in Table 2. It took a Powershell close
to one minute to generate the 200,000 �les of each set. �is is quite
an interesting observation: it is almost the same time needed in the
�rst step to generate the 100,000 �les. Python exhibited the same

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy S. Neuner, A.G. Voyiatzis, M. Schmiedecker, and E.R. Weippl

Table 1: Average and standard deviation of the occurrences
of unique timestamps in the synthetic dataset (delayed cre-
ation)

Storage Python Powershell
HDD 1.00 (0.02) 1.51 (0.62)
SSD 1.00 (0.02) 1.55 (0.68)

Table 2: Time in minutes to create a set 200,000 �les for the
synthetic dataset (no delay)

Storage Python Powershell
HDD 1:35 1:04
SSD 1:34 1:01
E1 0:59 1:01
E2 1:01 1:00
U1 0:59 0:24
eS 0:58 0:57

Table 3: Average and standard deviation of the occurrences
of unique timestamps in the synthetic dataset (creation
without delay)

Storage Python Powershell
HDD 12.95 (2.09) 1.99 (0.37)
SSD 13.52 (1.62) 1.97 (0.39)
E1 3.93 (2.04) 1.80 (0.50)
E2 17.31 (2.80) 1.68 (0.56)
U1 3.46 (0.94) 1.50 (0.52)
eS 31.00 (6.13) 2.15 (0.52)

performance as before for both HDD and SSD. It exhibits similar
performance to Powershell in the case of the externally-connected
disks E1, E2, and eS. �e la�er is also worth-mentioning, as the
storage media is the same as HDD; changing just the connector
from internal SATA to external eSATA, it takes 33% less time to
create the �les. �e case of U1 is also interesting in that for Python
it takes the same time (about one minute) like the other externally-
connected. However, it takes less than half a minute for Powershell
to create the �les on it.

We proceed with an analysis of the 400,000 creation timestamps
for each of the six storage media used to produce our synthetic
dataset. Table 3 summarizes the average and standard deviation
number of occurrences of each unique timestamp included in this
part of the synthetic dataset. �e situation now is quite di�erent
compared to that summarized in Table 1. �e Powershell script
results in an average number of occurrences that is close to 2.0
and a standard deviation less than 0.6. On the other hand, both the
average and the standard deviation of occurrences is signi�cantly
high in the case of the Python script, ranging from about 3.5 for
the USB �ash drive (U1) to 31 for the hard drive connected over
an eSATA connector (eS). We also observe that the same device
has an average of almost 13 when connected through the internal
SATA interface (row “HDD”). Figures 1-4 visualize these striking
di�erences in the distribution of timestamps for the four cases of
HDD and eS using Python and Powershell.

�e aforementioned information suggests that an analysis of
the distribution of the (sub-second) creation timestamp part may
reveal both the scripting language and the storage media type and

 0

 5

 10

 15

 20

 25

C

Figure 1: Synthetic, HDD, no delay, Python

 1

 1.5

 2

 2.5

 3

C

Figure 2: Synthetic, HDD, no delay, Powershell

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

C

Figure 3: Synthetic, eSATA, no delay, Python

connector used when the �les were created. �is can be useful
to detect if a set of �les were originally created on the disk under
investigation or were transferred to it through other means (e.g.,
copy from another media, which might disclose a data leakage).

4.2 Regular use of the �lesystem
�e �rst part of our analysis, described in Section 4.1, justi�ed that
is it feasible to generate a large numbers of �les in a short time.

Timestamp hiccups: Manipulated NTFS timestamp detection ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

 1

 1.5

 2

 2.5

 3

 3.5

 4

C

Figure 4: Synthetic, eSATA, no delay, Powershell

Table 4: Number of unique timestamps (bins) of �les in the
consumer-grade dataset �lesystems

id Round 1 Round 2
C-bins A-bins C-bins A-bins

S1 66,146 83,907 74,897 92,662
S2 57,920 92,405 104,538 68,224
T1 67,787 103,290 76,182 113,017
T2 132,149 138,917 625,753 766,984
T3 127,086 135,902 127,086 135,902
T4 270,206 317,427 270,273 317,503
M1 385,088 384,961 292,000 317,906
M2 206,461 287,538 194,620 297,097
A1 184,367 207,896 88,782 113,356
A2 - - 20,745 21,811

�is does allow the fast creation of a steganographic channel to
hide information.

In the second part of the analysis, we study the e�ect of the
day-to-day use of a �lesystem on the timestamps. We use the
consumer-grade dataset for this analysis. �ere are information for
ten NTFS volumes (�lesystems).

Table 4 summarizes the number of unique create (C) and last-
access (A) timestamps observed (C-bins and A-bins respectively)
in each volume of the consumer dataset at the beginning of the
experiment (Round 1) and a�er ten weeks (Round 2). �ere are some
interesting observations to further discuss in the next paragraphs.

A �rst observation is that there is a thirtyfold di�erence in size
among the ten volumes in the number of C-bins, as demonstrated
in the case of A2 and T2 in Round 2. �is indicates di�erent usage
pa�erns for the volumes (e.g., storing only the operating system
�les and using it a working space).

A second observation is that number of unique timestamps heav-
ily �uctuated between the two rounds of the experiment. �ere are
NTFS volumes that remain almost intact (e.g., T3 and T4), volumes
that rapidly expand (e.g., S2 and T2), or shrink (e.g., M1 and A1).

A third observation is that in all but two cases (M1 in Round 1
and S2 in Round 2), the are more A-bins than C-bins. It appears that
many �les share the same creation timestamp but there access times
are modi�ed later on. �is is further supported by the evidence pro-
vided in Table 5. �e average number of occurrences for the C-bins
is greater than the one of A-bins for all cases. As the total number
of creation and last-access timestamps are equal, this is an expected

Table 5: Average and standard deviation of the occurrences
of unique timestamps in the consumer-grade dataset (aggre-
gated)

id Round 1 Round 2
C-bins A-bins C-bins A-bins

S 3.80 (17.44) 2.73 (9.53) 3.60 (8.96) 2.56 (8.96)
T 2.87 (37.81) 2.40 (7.53) 2.21 (56.91) 1.80 (10.33)
M 2.36 (59.62) 2.08 (37.66) 2.47 (64.04) 1.96 (33.09)
A 2.02 (5.29) 1.79 (3.58) 3.07 (34.43) 2.45 (4.75)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

C

 0

 100

 200

 300

 400

 500

 600

A

Figure 5: Histogram of C-bins and A-bins for S2

�nding. However, the standard deviation is quite bigger than the
average value. �is is an indication that the distributions deviate
from a uniform one (even for the reduced number of available bins)
and there might be a signi�cant number of outliers.

Our assumption is valid, as depicted in Figure 5 and Figure 6.
�e Figures depict the histogram of C- and A-bins for two NTFS
volumes, namely S2 and A1. �ere are a lot of outliers values,
reaching even 900 occurrences. Similar trends are observed in all
volumes of our dataset. �ey are not reported here due to space
limitations. One of the volunteers kindly agreed to share the �le
names and paths of the whole NTFS volume (identi�ed as S1) for
the purpose of this paper.

Our analysis indicates that a large number of �les are part of so�-
ware installations on the volume (e.g., an o�ce productivity suite
and a computer game). Such �les are installed from compressed
archives and/or DVD/CD-ROM media. As such, the original times-
tamps are preserved when copied to the NTFS volume. �e original
media do not support 100-nanosecond granularity2, the “hiccups”
in the histogram hence. �ese hiccups do not invalidate the TOMS
steganographic channel. Rather, an a�acker must carefully select
a subset of �les that exhibit a smooth, uniform distribution and
avoid speci�c paths that come from installation media (e.g., the
C:\Program Files\ folder). Another approach would be to cre-
ate a new set of �les altogether for hiding information in their
timestamps.

2�e UDF �lesystem supports microsecond granularity (Source: h�p://www.osta.org/
specs/pdf/udf260.pdf).

http://www.osta.org/specs/pdf/udf260.pdf
http://www.osta.org/specs/pdf/udf260.pdf

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy S. Neuner, A.G. Voyiatzis, M. Schmiedecker, and E.R. Weippl

 0

 100

 200

 300

 400

 500

 600

C

 0

 50

 100

 150

 200

 250

A

Figure 6: Histogram of C-bins and A-bins for A1

4.3 Enterprise environment
In the third and last part of the analysis, we study the e�ect of a
homogeneous environment on the distribution of the �le times-
tamps. We use the enterprise-grade dataset for this analysis. �ere
are information for 70 NTFS volumes.

Our analysis revealed that a large number of �les are, as in the
case of the consumer-grade dataset, part of so�ware installations
from compressed archives and UDF volumes. �ere are stronger
pa�erns now, as these installations are instrumented from a central
location and from the same installation media.

Figure 7 depicts the distribution of the create (C) and last-access
(A) timestamps for one randomly-selected volumes; all the 70 vol-
umes exhibit the same pa�erns and are not reported here due to
space constraints. �e “hiccups” are evident once more but a TOMS-
based a�ack is again possible.

We note that in the case of an enterprise environment, the a�ack-
ers have a harder task to solve, as the channel capacity is further
reduced. Indeed, the IT administrators can compare the distribution
of timestamps of an investigated volume with many more avail-
able in the enterprise - this is not possible in the case of single
consumer-grade volume as there is no “reference” volume available
to compare against. Furthermore, company policies can reduce the
number of volumes and paths where an a�acker can place the �les
for the TOMS channel, further minimizing (but not eliminating)
the risk of an a�ack.

5 CONCLUSIONS
TOMS utilizes the redundant capacity available in �lesystem times-
tamps to build an information hiding channel of steganographic
strength. We assessed the feasibility of building such channels
using di�erent storage media and connectors and evaluated the
a�ainable channel capacity in arti�cial (synthetic), consumer, and
enterprise environments.

We con�rm that TOMS is a feasible threat. However, the a�acker
has to spend signi�cant e�ort to hide the manipulations from a
proper digital forensic investigation, either by disabling the TOMS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

C

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

A

Figure 7: Histogram of C- and A-bins in enterprise volume
42

encryption layer or by choosing those �les that exhibit a uniform
distribution of timestamps already. �e capacity of the stegano-
graphic channel is further reduced in an enterprise environment
with centralized administration, where di�erent NTFS volumes
can be compared with each other for irregularities in timestamp
pa�erns.

As future work, we aim to extend the feasibility study of TOMS
in other �lesystems and devise tools that can automate timestamp
monitoring and detection of such manipulations.

ACKNOWLEDGMENTS
�e research was supported by the Austrian Research Promotion
Agency (FFG) through the Bridge Early Stage grant P846070 (Speed-
For) and the COMET K1-centres programme (SBA2 and SBA-K1).
We thank the reviewers for their insightful feedback and the volun-
teers for providing their �lesystem data.

REFERENCES
[1] R. Anderson, R. Needham, and A. Shamir. 1998. �e steganographic �le system.

In Information Hiding. Springer, 73–82.
[2] K.-P. Chow, F.Y.W. Law, M.Y.K. Kwan, and P.K.Y. Lai. 2007. �e rules of time on

NTFS �le system. In Second International Workshop on Systematic Approaches to
Digital Forensic Engineering (SADFE 2007). IEEE, 71–85.

[3] X. Ding and H. Zou. 2010. Reliable Time Based Forensics in NTFS. (2010).
Available on h�ps://www.acsac.org/2010/program/posters/ding.pdf.

[4] X. Ding and H. Zou. 2011. Time based data forensic and cross-reference analysis.
In Proceedings of the 2011 ACM Symposium on Applied Computing. ACM, 185–190.

[5] Europol. 2016. 2016 Internet Organized Crime �reat Assessment
(IOCTA). (2016). Online at h�ps://www.europol.europa.eu/content/
internet-organised-crime-threat-assessment-iocta-2016.

[6] H. Khan, M. Javed, S.A. Khayam, and F. Mirza. 2011. Designing a cluster-based
covert channel to evade disk investigation and forensics. Computers & Security
30, 1 (2011), 35–49.

[7] Microso� Developer Network. 2017. File Times. (2017). Online at h�ps:
//msdn.microso�.com/en-us/library/ms724290/.

[8] S. Neuner, A.G. Voyiatzis, M. Schmiedecker, S. Brunthaler, S. Katzenbeisser, and
E.R. Weippl. 2016. Time is on my side: Steganography in �lesystem metadata.
Digital Investigation 18 (2016), S76–S86.

[9] E. Zielińska, W. Mazurczyk, and K. Szczypiorski. 2014. Trends in steganography.
Commun. ACM 57, 3 (2014), 86–95.

https://www.acsac.org/2010/program/posters/ding.pdf
https://www.europol.europa.eu/content/internet-organised-crime-threat-assessment-iocta-2016
https://www.europol.europa.eu/content/internet-organised-crime-threat-assessment-iocta-2016
https://msdn.microsoft.com/en-us/library/ms724290/
https://msdn.microsoft.com/en-us/library/ms724290/

	Abstract
	1 Introduction
	2 Steganography over file timestamps with TOMS
	3 Methodology and datasets
	3.1 Synthetic dataset
	3.2 Consumer dataset
	3.3 Enterprise dataset

	4 Analysis
	4.1 Storage technology and scripted creation
	4.2 Regular use of the filesystem
	4.3 Enterprise environment

	5 Conclusions
	Acknowledgments
	References

